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Abstract

The main goal of this research is determination of optimum shape brick masonry arches under
dynamic loads by cellular automata. In this paper, samples of semi-circular, obtuse angel, four-
centered pointed, Tudor, ogee, equilateral, catenaries, lancet and four-centered arches are
modeled. Then they are analyzed and optimized under acceleration—time components of Elcentro
earthquake. For arch response optimization, the results were used in cellular automata
computational model. Then using provided rules for modeling, the mentioned arches are analyzed
and optimized. The results of error range and time of analysis in automata cellular model and
FEM software compared. Finally comparing the results of CA (Cellular Automata) method and
FEM (Finite Element Method) method, shows that although precision is less in CA method, but
the time of analysis and optimization is so much smaller in it.
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1. Introduction

Traditionally, an arch is defined as a part of circle or bow, but our particular definition
of arch is as follows: it is a curve surface for covering that its span is higher than its
depth (Heyman, 1982). Brick masonry arches have been used to span covering of
considerable length in many different applications. Structural efficiency is attributed to
the curvature of the arch, which transfers vertical loads laterally along the arch to
the abutments at each end (Blasi and Foraboschi ,1990). Transferring of vertical forces
gives a rise to both horizontal and vertical reactions at the abutments. The curvature of
the arch and its restraint by the abutments cause a combination of flexural stress and
axial compression in it. The depth of arch also its rise and configuration can be
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manipulated to keep stresses primarily compressive and because the brick masonry is
very strong in compression, so brick masonry arches can support considerable load
(Brickwork, 1989).

Regarding the importance and application of arches in traditional structures, arches
optimization has been considered (Huerta, 2001). There has been some research on brick
masonry under dynamic loads (Kumarci et al, 2008). Dynamic or time history analysis is
an analytical method for determining reflections during the earthquake in structures.
Through this analysis, response of structure under loadings which are related to time has
been studied (Hughes, 1987). Dynamic analysis and optimization of arches need to
consume a long time; it is necessary to use a proper computational model such as
cellular automata to analyze and optimize the arches in less time and also for more
acceptable results .Cellular automata is a decentralized computation model. It is a good
method for computation and simulation of complicated behaviors by local data
(Wolfram, 2002). The present research goals are modeling, analyzing and optimizing
complicated behaviors of semi-circular, obtuse angel, four- centered pointed, Tudor,
ogee, equilateral, catenaries, lancet and four-centered arches, under dynamic load using
cellular automata. The main importance of this research is showing the ability of
analyzing and optimizing of every arch after one time of modeling in a so much shorter
time.

2. Modeling, analyzing and optimizing arch shape using FEM software

At the first step arch modeling has been conducted by FEM software. Furthermore,
dynamic analysis has been conducted applying north-south horizontal accelerations of
Elcentro earthquake in which the time, maximum acceleration, maximum velocity and
maximum displacement are 31.98(s), 0.31(g), 33 (cm/sec) and 21.4 (cm), respectively
(Fig.1) and SOLID65 is used for analysis in this stage. Arch shape optimization
emphasized on the minimizing of arch weight. In FEM software, the base and top
thickness, maximum tensile stress and weight of structure have been defined as design
variable, state variable and objective function, respectively. For example, optimum shape
of semicircular arch in FEM software has been shown (Fig.2). Regarding the extra time
for analysis and optimization, the optimization has been conducted in design optimum
processor by means of Sub problem approximation method. This is an estimating method
for variable designing, state and objective function via curve fitting tool. It is a general
method for solving many engineering problems (Crisfield, 1985).

2.1 Geometrical modeling

According to shape optimization design variables, such as base thickness (t;) and top
thickness (t;) as parameters, all the key points are defined as follows (Fig.3):

Point 1: (0, 0) Point (2): (R, 0) Point3: (-R, 0) Pint4: (0, R)

Point 5(R+t0, 0) Point6: (-R-tq, 0) Point 7: (0, R+t))
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Fig. 1. North-south horizontal component of Elcentro earthquake
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Fig. 2. Optimum shape of semicircular arch using FEM software
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Fig. 3. Geometrical model of semicircular arch

In arch modeling, the tolerance increases because the thickness decreases from base to
top (Abruzzese et al, 1995). It should mention that in modeled arch, the thickness
decreases from base (t) to top (t;) linearly and also arch thickness of axis is 20 (cm) in
the length direction. The motion of support nodes is zero and dynamic force has no
effect on them. In addition, brick masonry is made by brick and mortar as homogenous
material (tablel). The efficient factors in the inelastic nonlinear analysis have been
shown in table 2. In the present paper, arch radius limit (R), maximum tensile stress,
base and top thickness in optimum state are considered as 4-8 (m), 49000-5100 (KN/m”?),
0.8- 1.44 (m) and 0.2-0.35(m) respectively for all modeled arch.

Tablel
Brick masonry characteristics (Bsthe, 1996)
density( P ) Elastic modulus Allowable tension Poisson ratio (V)
(Kg/m?) ]V stress(f})
2
(£ m)
5
1460 5%10° 0.5%10 0.17

Table 2

Effective coefficient in non elastic and nonlinear analysis (Baggio and Trovalusci, 2000)

motion coefficient motion coefficient allowable tension allowable
for open crack for close crack stress compressive stress
N/m? N/m?
0.1 0.9 sx10* 5x10°
3. Cellular automata

At the beginning of 1950, cellular automata (CA) have been proposed by Von Neumann.
He was interested to male relation between new computational device - automata theory
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-and biology. His mind was preoccupied with generating property in natural events
(Neumann, 1993).

He proved that CA can be general. According to his findings, CA is a collection of cells
with reversible states and ability of computation for every thing. Although Van rules
were complicated and didn’t strictly satisfy computer program, but he continues his
research in two parts: for decentralizing machine which is designed for simulation of
desirable function and designing of a machine which is made by simulation of
complicated function by CA (Neumann,1996).

Wolfram has conducted some research on problem modeling by the simplest and most
practicable method of CA architecture too. In 1970,"The Game of Life" introduced by
Conway and became very widely known soon. At the beginning of 1980, Wolfram
studied one-dimension CA rules and demonstrated that these simple CAs can be used in
modeling of complicated behaviors (Wolfram, 1983, 1984).

3.1 Definitions

CA is characterized by (a) cellular space (b) transfer rule (Moore, 2003).

For CA , cell, the state of cell in time t, sum of neighbors state at time t and
neighborhood radius are denoted by i, ft,niland r, respectively. Also, the rule is
function of ¢(77ft) .

3.2 Change state rules

Each cell changes its state, spontaneously. The primary quality of cells depends on
primary situation of problem. By these primary situations, CA is a system which has
certain behavior by local rules. The cells which are not neighbors, have no effect on each
other.CA has no memory, so present state defines the next state (Wolfram, 2002).

Quadruple CA is as CA= (Q, d, V and @), where Q, d, V and @ are collection of possible
state, CA dimension, CA neighborhood structure and local transferring rule,
respectively.

For 1-d CA, amount of i cell (1<i<n) at t is shown by a;(t) and is calculated by this
formula:

ai(t+1)= @ [a.(1), alt), ai(1)]

In this formula, if ® is affected by the neighbors, it is general. If @ is a function of
neighbor’s cell collection and central cell, it is totalistic.

ai(t+1)= D [a;.1(1), ai(t), ai+1(t)]
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Fig. 4. Neighborhood space of Von Numann in 1-D CA

4, Arch modeling using CA

In this stage, regarding the definition of neighborhood radius and state reversal rule in
three state 1-d CA, the data for each arch will be analyzed to find the rules of simulation
of arch behavior. To achieve this aim, 100 samples of each arch radius, base and top
thickness and maximum tensile stress were chosen and analyzed by two and three state
algorithm ( figure 5 defines two state algorithm completely). After one billion
accomplishments, for 256 two-state rules and one million three-state rules, some models
were provided for each arch. For example, figures 6 and 7 define semicircular rules and
tensile stress efficiency, respectively.

5. Test of cellular automata models

Maximum tensile stress for 50 samples (according to algorithm in figure 8) has been
provided. The error percent has been compared with another analyzed model in FEM
software.

5.1 Test of CA model for semicircular arch

Maximum tensile stress was achieved for 50 samples of semicircular arches by CA.
Figure 9 define comparison between maximum tensile stress in FEM and CA model. The
mean of error percent in semicircular arch is 13.365%. Figure 10 represent error percent
of each sample. Moreover, Fig. 11 illustrates the diagram of comparison between time of
maximum tensile stress computation using CA and FEM software, respectively.
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6. Arch optimization using CA

In this stage, by means of CA model for each arch top and base thickness were
optimized. Considering optimized maximum tensile stress which is 51000(N/m?), the
range of radius, top thickness and maximum tensile stress in each arch are considered as
input, so arch base thickness will be provided. In the next stage, size of arch radius, base
thickness and maximum tensile strain are considered as input. So arch top thickness will
be provided (arch base thickness optimization is defined in figure 12).

6.1 Top thickness optimization in semicircular arch using CA
In this stage, 50 semicircular arch samples were chosen for top thickness optimization.

Their optimum maximum tensile stress range, arch radius and base thickness were 49000
to 51000 (KN/m?), 4~8 meter and 0.8 to 1.44, respectively. After ward, the top thickness




was calculated and compared with top thickness in FEM software (fig.15). The mean of
error percent of top thickness calculation was 11.37%. Figure 13 and 14 show error
percent of each sample in CA toward FEM software and comparison of optimization
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time of top thickness optimization in semi circular arch.
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6.2 Base thickness optimization in semicircular arch using CA

In this section, 50 semicircular arch samples were chosen for top thickness optimization.
Their optimum maximum tensile stress range, arch radius and base thickness were 49000
to 51000(KN/ m?), 4~8 meter and 0.2 to 0.35, respectively. After calculation of base
thickness-according to algorithm in figure 12, the results were compared with base
thickness in FEM software (Fig.18). The mean of error percent of base thickness
calculation was 11.69%. Figure 16 and 17 show error percent of each sample in CA
toward FEM software and comparison of optimization time of base thickness
optimization in semi circular arch.

7. Conclusion

In the present paper, nine arches- semi-circular, obtuse angel, four- centered pointed;
Tudor, ogee, equilateral, catenaries, lancet and four-centered arches- were modeled using
FEM software and CA model. Figures 19, 20 and 21 show analysis and optimization
time, the results which are provided by CA in arch modeling and the mean of error
percent for arch analysis and its optimization, respectively.

Considering results, CA model can be used in simulation of all arches. Therefore, the
time of calculation decreases. Also, it can be used in dynamic response, natural
frequency and response of structure under different dynamic loads. To increase models
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precision, the rules which are larger than 1000000 and repeated more than 1000000000
times are needed.
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Fig. 20. Comparison between provided rules for discussed arches using cellular automata
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W Base Thickness 11.6918 11.3669 10.6008 10.8961 11.6958 13,527 125278 13.932 12.4059
Error Percent AVG
O Tensile Stress 13.365 13.8451 10.2532 10.7823 12.3959 13.9926 12.7088 13.4953 13.047
Error Percent AVG
B Top Thickness 11.3719 14.0841 12.7482 12.5271 11.7823 12.7226 11.1769 11.1753 12.8139
Error Percent AVG

Fig. 21. Comparison between the mean of error percent

software

of analysis of

tensile stress and
optimization of base and top thickness for discussed arches using CA model toward FEM




