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Abstract

In the present paper, a non-dimensional mathematical model for high tower buildings and its
foundation under randomly fluctuating wind loads and earthquake ground motions excitations is
developed as a nonlinear model to study the system more extensively. The system main equations
could be derived using two different derivation methods and linearized in minimal symbolic forms;
which facilitate a subsequent numerical simulation in order to investigate the vibration characteristics
of whole system. The analysis enables designers to have more insight into the characteristics of high
tower buildings of similar configuration but with different geometry and material. The complexity of
wind loading with its variations in space and time has been considered. A comprehensive mathematical
model of six degrees of freedom is presented and solved for free and forced vibrations.
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List of symbols

G, Aerodynamic pressure factor (-)
E Kinetic energy of the system (J)
Eq Soil dynamic modulus of elasticity (kp/m®)

Fin F1v - Spring and damping forces at C or E in horizontal and vertical direction (kp)

Fon, Fov  Spring and damping forces at D or F in horizontal and vertical direction (kp)

Fen, Fev  Spring and damping forces at's; in horizontal and vertical direction due to earthquake effect (kp)
H(@) imaginary transformation function (-)

JiJ2 Mass moment of Inertia of foundation with its accompanied vibrated soil and tall building (kg.s2.m)
Je Js Mass moment of Inertia of foundation and accompanied vibrated soil with it (kg.s%.m)

ken, key  Linear horizontal and vertical equivalent spring stiffness of earth (kp/m)

kek Rotational equivalent spring stiffness of earth (kp.m/rad)

ky kv Linear horizontal and vertical equivalent spring stiffness of building-foundation connection (kp/m)
L Lagrangian function (-)

m; m,  Total mass of foundation with its accompanied vibrated soil (mg+ mg) and tall building (kg)
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mg ms  Foundation and Vibrating soil mass (kg)
Mw(t)  Total turbulent wind moment as a function of time (kp.m)

('P% General coordinates ZI, yI, (pI, Z;, y;, and (p; (m, m, rad, m, m, rad)

RQ.QJ (1) Cross correlation function of the excitations (m?)

Rqrqs (1),R X, X, () Cross correlation function of response with respect to general and original coordinates (m?)

R Rayleigh’s dissipation function(kp.m/s)
Iy Vertical embedding damping constant: the damping constant of radiation (kp.s/m?)
IEK Rotational equivalent damping coefficient of earth (kp.m.s/rad)

ren rev  Linear horizontal and vertical equivalent damping coefficient of earth (kp.s/m)

v Linear horizontal, vertical equivalent damping coefficient of building-foundation connection (kp.s/m)
rs Damping coefficient of the elastic soil bed (kp.s/m®)

S1,52 Centre of gravity of the foundation and tall building (-)

Sq.q.(Q)’Sqrqs(Q) Auto and cross power spectral density function of response w.r.t. general coordinates
(m?.s/rad)

So,0, (Q), So,0, (Q) Auto and cross power spectral density function of excitations (m?.s/rad)

SXan(Q)’SXrXs (QQ) Auto and cross power spectral density function of response w.r.t original
coordinates(m?.s/rad)

t Time (s)
Tex Spring and damping torques about s; in rotational direction (kp.m)
U Potential energy of the system (J)

U(H) Average wind velocity along the building height H (m/s)

U, (t), U,(t) Random displacement excitation of earthquake in horizontal and vertical direction (m)
U(z,t) Wind speed as a function of space and time (m/s)

U(z) Constant part of wind speed as a function of space (m/s)

U'(Z, t) Turbulent part of wind speed as a function of space and time (m/s)
Vs Vertical wave velocity (m/s)

W(t)  Total turbulent wind force in y-direction as a function of time (kp)
W(z,t) Wind load as a function of space and time (kp)

W(Z) Constant part of wind load as a function of space (kp)

W'(z, t) Turbulent part of wind load as a function of space and time (kp)
X Amplitude of exponential solution of motion differential equations (m)

yz 1), zz(t) Displacement of point O in the direction of y; and z, — axis (m)
Y1(1), 21(1), 91(7), Y, (1), Z, (1), ¢, (1) non-dimensional Displacements (-)

y1(1), (1), @1 (1), Yo (1), 25 (1), @, (t) non-dimensional velocities (-)

y1 (1), 21 (1), 01 (1), Y5 (1), Z5 (%), @, (t) non-dimensional accelerations (-)
y;(t),z1(t) Displacement of gravity centre s, of foundationin y; and z; - axis (m)
y;(t), Z;(t) Displacement of gravity centre s, of high tower building in y; and Z; - axis (m)
yE (1), ZE (t) Displacement of point C in the direction of yz and ZE —axis (m)

Ve (t), z¢ (1) Velocity of point C in the direction of yz; and zz; —axis (m/s)

yz(t), Zz(t) Acceleration of point C in the direction of yz and zE —axis (m/s?)
yB(t), ZB (t) Displacement of point D in the direction of yTD and ZTD —axis (m)

y’,; (1), 2]; (t) Velocity of point D in the direction of y*D and zB —axis (m/s)

Y5 (1), 25 (t) Acceleration of point D in the direction of yTD and ZTD — axis (m/s?)

ye(t), ze (t) Displacement of point E in the direction of yg and zg — axis (m)
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Ve (t), zg(t) Velocity of point E in the direction of y¢ and zg —axis (m/s)

Ve (1), Z2 (1) Acceleration of point E in the direction of yg and zg — axis (m/s?)
yr(t), £ (t) Displacement of point F in the direction of y and z; —axis (m)
y;(t), 2;(t) Velocity of point F in the direction of y; and z; —axis (m/s)

Ye(1), Ze(t) Acceleration of point F in the direction of yr and zp —axis (m/s?)
o Profile constant (-)
YB Specific weight of the high tower building (kp/m?)

p, py,and p, Density of air, foundation, and high tower building respectively (kg/m?)
T non-dimensional time [-]

@, (), @1 (1), @o(t) Angular displacements about X, X; ,and X, —axis [rad]

@, (), @y(t) , @, (t) non-dimensional angular displacement about X, X;,and X, —axis [-]

1. Introduction

Large investments have recently been made for the construction of new medium- and high-
rise buildings in the world. In many cases performance-based designs have been the preferred
method for these buildings. A main consideration in performance-based seismic design is the
estimation of the likely development of structural and nonstructural damage limit-states given
a hazard level. For this type of buildings efficient modeling techniques are required able to
compute the response at different performance states. Certain structures are less vulnerable
against vibration impacts whereas certain others are more vulnerable. As we all know that
vibration effects are now cannot be neglected, as our day to day life is affected by them.
Study of vibration responses of structures has always been a principal concern for design
engineers. Therefore, we do put an eye on the vibrations of buildings and its foundations.
Uncontrolled vibration causes devastation. Occurrences of Tsunami, earthquake, collapse of
structures are few such most common devastating effects of vibration. Thus the study of
vibration responses in advance is of immense importance for sustainable and positive effects
of vibrations for the well being of humans.

Nowadays, the new and emerging concept of seismic structural design, the so-called
performance-based design, requires careful consideration of all aspects involved in structural
analysis. One of the most important aspects of structural analysis is Soil-Structure Interaction
(SSI). Such interaction may alter the dynamic characteristics of structures and consequently
may be beneficial or detrimental to the performance of structures. Soil conditions at a given
site may amplify the response of a structure on a soil deposit. Not taking into account these
structural response amplifications may lead to an under-designed structure resulting in a
premature collapse during an earthquake. Analytical methods of SSI concentrate mainly on
single degree of freedom systems and analysis/design of long and important structures such as
large bridges and nuclear power plants, and rarely on regular type buildings. Studies which
include SSI effects will help to better predict the performance of structures during future
ground motions. State of the art knowledge and analytical approaches require, that, the
structure-foundation system to be represented by mathematical models that include the
influence of the sub-foundation media.

A research work of Panagiotou, M. (2008) was conducted at University of California San
Diego (UCSD) on the seismic design, experimental response, and computational modeling of
medium- and high-rise reinforced concrete wall buildings. Kim, S.J. (2008) presented an
investigation of the effect of vertical ground motion on reinforced concrete structures studied
through a combined analytical-experimental research approach. Krier, D. (2009) analyzed
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several soil-structure interaction problems. Buildings on elastic foundations were studied and
comparisons were made between analytical results and the solutions obtained from a Tera
Dysac finite element analysis. Gouasmia, A. et al. (2009) studied the seismic response of an
idealized small city composed of five equally spaced, five storey reinforced concrete
buildings anchored in a soft soil layer overlaid by a rock half space. These results show
response amplification of the buildings in the near field in accordance with the results
observed in similar cases. Antonyuk, E.Ya., Timokhin, V.V. (2007) outlined a mathematical
model describing the vibrations of buildings and engineering structures with general-type
passive shock-absorbers, rigid bodies, and ideal constraints.

Auersch, L. (2008) predicted a practice-oriented environmental building vibrations. A
Green’s functions method for layered soils is used to build the dynamic stiffness matrix of the
soil area that is covered by the foundation. A simple building model is proposed by adding a
building mass to the dynamic stiffness of the soil. Belakroum, R., et al. (2008) studied the
numerical prediction of the aerodynamic behaviour of rectangular buildings. Simulations
were made for rectangles of different side coefficients and different angles of attack. The
finite element method is used to simulate fluid flow considered Newtonian and
incompressible. Davoodi, M., et al. (2008) used the ambient vibration tests to rely on natural
excitations, consequently, it was recommended to perform impulsive test for identifying the
hidden dynamic characteristics of the building. Kuzniar, K. and Waszczyszyn, Z. (2006)
applied neural networks for computation of fundamental natural periods of buildings with
load-bearing walls. The analysis is based on long-term tests performed on actual buildings.
The identification problem was formulated as the relation between structural and soil
basement parameters, and the fundamental period of building.

Uzdin, A.M. et al. (2009) derived equations for the vibrations of a building on the foundations
under consideration. Impossibility of use of traditional methods of the linear-spectral theory
for analysis of their earthquake resistance is demonstrated. It is established that the systems
under consideration do not possess a natural vibration period, and may have ambiguous
solutions for forced vibrations. The influence of city traffic-induced vibration on Vilnius
Arch-Cathedral Belfry was investigated (Kliukas, R. et al. 2008). Two sources of dynamic
excitation were studied. Conventional city traffic was considered to be a natural source of
excitation while excitation imposed artificially by moving a heavily loaded truck was
considered to be the source of increased risk excitation. Configuration of equipment on
springs is simplified for numerical analysis. A simplified approach and associated equations
of motion can be developed to evaluate the response of the equipment with vertical and
horizontal forcing functions (Turner, J. 2004). Gong, Y. (2010) developed a free vibration
analysis method for space mega frames of super tall buildings. The physical model of a mega
frame was idealized as a three-dimensional assemblage of stiffened close-thin-walled tubes
with continuously distributed mass and stiffness.

Yang, Y.B. et. al analyzed the wave propagation problems caused by the underground moving
trains by the 2.5-dimensional finite/infinite element approach. The near field of the half-
space, including the tunnel and parts of the soil, was simulated by finite elements, and the far
field extending to infinity by infinite elements. Ground-borne vibrations due to subway trains
have sometimes reached the level that cannot be tolerated by residents living in adjacent
buildings (Shyu et. al. 2002). Also, approaches for predicting vibrations caused by metro
trains moving through the tunnel were developed (Gupta et al. 2007), e.g., a semi-analytical
pipe-in-pipe model (Forrest and Hunt 2006a,b) and a coupled periodic finite-element—
boundary-element model (Clouteau et al. 2005; Degrande et al. 2006b). Clearly, ground-borne
vibrations have become an issue of great concern, which will continuously attract the
attention of researchers and engineers worldwide. many research projects on ground-borne
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vibrations due to subway trains were conducted by field measurement (Vadillo et al. 1996;
Degrande et al. 2006a) and empirical or semiempirical prediction models (Kurzweil 1979;
Trochides 1991; Melke 1998). These studies provide practical references for solving related
problems. However, most of these studies were performed for a specific condition, thereby
suffering from the lack of generality. On the other hand, concerning the techniques of
simulation, most previous works have been based on the two-dimensional (2D) models
(Balendra et al. 1991; Yun et al. 2000; Metrikine and Vrouwenvelder 2000).

Prowell, 1. (2011) presented an experimental and numerical investigation into the seismic
response of modern wind turbines simultaneously subjected to wind, earthquake, and
operational excitation. Ulusoy, H.S. (2011) described a certain class of system identification
algorithms with particular emphasis on civil engineering applications. The algorithms
originated from system realization theory enabled one to identify finite dimensional, linear,
time-invariant models of systems in the state space representation from observed data.
Wieser, J. (2011) used OpenSees finite element framework to develop full three dimensional
models of four steel moment frame buildings. The incremental dynamic analysis method is
employed to evaluate the floor response of inelastic steel moment frame buildings subjected
to all three components of a suite of 21 ground motions. Ghafari Oskoei, S.A. (2011) dealt
with the dynamic behavior of tall guyed masts under seismic loads. Zhong, P. (2011) utilized
a ground motion acceleration time-history as an input to an analytic model of a structure and
solved the structural response at each time step of the ground motion record.

Weng, S. (2010) proposed a forward substructuring approach, the eigenproperties of the
partitioned substructures were assembled to recover the eigensolutions and eigensensitivities
of the global structure, which were tuned to reproduce the experimental measurements
through an optimization process. Sonmez, E. (2010) developed semi- active controllers,
which were based on real-time estimation of instantaneous (dominant) frequency and the
evolutionary power spectral density by time-frequency analysis of either the excitation or the
response of the structure. Time-frequency analyses were performed by either short-time
Fourier transform or wavelet transform. Soudkhah, M. (2010) examined the dynamic
response of surface foundations on sandy soils under both forced and ground motion
disturbance. Yao, M.M. (2010) used the direct method for modeling the soil and a tall
building together and studied energy transferring from soils to buildings during earthquakes,
which is critical for the design of earthquake resistant structures and for upgrading existing
structures. Ahearn, E.B. (2010) studied the dynamic effects of wind-induced vibrations on
high-mast structures in Laramie, WY, and proposed several retrofits that increase the
aerodynamic damping, thereby reducing vibrations.

The ground vibration induced by earthquake ground motions is a complicated dynamic
problem due to the involvement of a number of factors along the paths of wave propagation,
including the load generation mechanism, the geometry and location of tunnel structures, the
irregularity of soil layers, etc. Previously, many research projects on ground-borne vibrations
due to earthquakes were conducted by field measurement and empirical or semi-empirical
prediction models. These studies provide practical reference for solving related problems.
However, most of these studies were performed for a specific condition, thereby suffering
from the lack of generality.

Assumptions

1. The high tower building-foundation equivalent system moves only in the y'- z* plane.

2. The wind effect is identified as randomly fluctuating wind loads in horizontal direction.

3. Uy(t), Uz(t) are random ground motions of earthquake in horizontal and vertical
directions y and z.
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The high tower building and its foundation are assumed as rigid bodies.
The soil kind under the foundation is assumed as a sandy clay :

(a) Specific weight yg =1200 kp/m?3.

o &

(b) Dynamic modulus of elasticity E4 =30.6*10% kp/m?.
(c) Vertical wave velocity (compression direction) vg =500m/s (Lorenz, H. 1955).
The angular velocities ¢; (t), ¢; (t),and ¢, (t)are very small (<<1).
The equivalent spring stiffness kg, kg, and k, are linear.
The equivalent damping coefficients ry, rg,, and r, are linear.
The density of building p, is taken as 0.1 that of the foundation.

The air friction was not considered.
The place pressure factor C,can be replaced through the average load factor of total

BB © ®© N

= o

building.
12. The spectral power density Sy , (©2) is independent on the cartesian coordinates z, y.

13.  The wind velocity distribution along the height of the building can be described with
the equation

— Z a_
U@)= ()" U(H).
14.  The cross spectral power density S, (Q)can be represented through the coherence

spectrum of the wind  velocity U'(z;,t)and U'(z,,t)

2 2
Yuluz(Q) :|SU1UZ(Q)| /[Sulul(Q)-Suzuz(Q)]

2. Derivation of system equations using D’alembert’s principle

The model of the problem to be considered is schematically shown in Fig. 1. This model
describing the vibrations of high-tower building and its foundation with general-type
equivalent passive springs and dampers, rigid bodies, and some ideal constraints like linear
springs and dampers under the effect of randomly fluctuating wind loads and the excitation of
earthquake ground motions. In setting up the equations of motion of the equivalent system in
Fig. 1, it should be born in mind that the geometric, elastic, and kinetic relations of both high
tower building and its foundation must be derived. Moreover the external excitation of wind
loads should be prepared.

2.1 Foundation differential equations of motion
Figure 2 shows the free body diagram of foundation with its accompanied vibrating soil.
2.1.1 Geometric relations of tall building and its foundation

For the linearization of derived equations, let ¢,,¢,andp, << 1. Geometric relations of
building’s foundation are

z¢(t) =2z, (1) + 0.5b.0, (1), Zp(t) =z, (1) —0.5b., (1), Ze(t) = z; (1) + 0.5b.0; (1)
Z¢(t) = z;(t) - 0.5b.; (1)

75(t) = 25(t) = 0.5¢.(L—cos p(1) = Zo(1) , @2(1) =5 (1) , Ye(t) = Yo(1),

Ya(t) = Yo (t) +0.5¢.5in 05 (1) = Yo (1) +0.5c.02(t) , Yo (t)=Yo(t), Ye(®)=y1(t), and ye(t) =yi(t)

Rearranging the previous geometric relations leads to the following form
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25 (t) = 25 (1) + 0.50.9, (1) , zp (1) = Z,(t) = 0.5b.9, (1), z¢(t) =z (t) + 0.5h.0; () ,
Z¢(t) =2, (t) - 0.5b.0; (1)
Ye(t) = Y2(1) = 0.5c,(t) , Yp(t) =y,(t) - 0.5c,(t), ye()=y;(t), and yr(t) = yi(t)
} @

2.1.2 Elastic relations of building’s foundation

Elastic relations of building’s foundation have the form
Fiv = Ky.[2e (1) = Zc (D] + 1v.[2e (1) = 2 (O], R = K [YE (1) = ye (D] + 1 [¥e () - Ve (D] ,

Fov =ky[ze () - 2p O]+ R [Zr ) - 25 (0], Fop = Kp [y () = yp (D1 + 1. [Y7 (1) - Y5 (D]
Fer = Ken-[ys (8) = Uy (01 + 1 [91 (1) = Uy (D1, Fey = Key [21(1) = U, (O] + rey[21 (1) - U, (1)]
} @)

Tew = Kex 01 (1) + T (1)
2.1.3 Kinetic relations of building’s foundation

Applying Newton’s second law for the forces in z- and y-directions and the moments about
s; results in

Z F, =myzi(t) = -Ry —Foy —Fey Z Fy = my.y; (t) = —Fiy — Fouy — Fen
Z Mg, = J;.9; (t) = =Ry .0.5b.cos @; (t) + Fyy, .0.5b.€08 ¢y (t) — Tew (1) = (Foy — Fpyy )-0.5b — Teye (1)
} (©)

2.2 Differential equations of motion of high tower building

Figure 3 shows the free body diagram of high tower building with its forces and moments
affecting on it.

2.2.1 Aeroelastic relations of wind excitation

Nowadays, the study of the behavior of a structure subjected to hydro or aerodynamic
loadings forms an integral part of tasks allocated to engineers. The effect of wind must be
taken into consideration during the design phase of tall buildings. The mechanism of wind
loads acting on a building is very complex. Substantial works have dealt with this problem. In
civil engineering and construction of tall buildings, the assessment of wind loads is required
to check the resistance of components of the construction and coating. In recent years, the
methods proposed by scientists in this field are constantly being updated. The institutions of
global standardization are thus forced each time to review the standards that are in force.
Under the effect of wind, a building oscillates according to both directions parallel and
perpendicular to the flow and in a torsional mode. Notwithstanding its enormous fascination,
wind loading is in fact a parasitic effect, and mostly an obstacle in the way of designing
structures for their primary intended use. Without wind, structures — particularly large ones —
would probably be a lot easier to design and cheaper.

Dynamic wind pressures acting on buildings are complicated functions of both time and
space. The wind load per unit area has the form

W(z,t)=C,q(z1) and q(z, t):%p U?(z,t)
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Wz ) =C, 2. Uz, 1) = Cp.%.[U(z) +U @R = Cp.%.[Uz(z) +2U@2)U 1)+ Uz, 1)]

f—t

my ), B\

—— Uz

VWVTRY

W (z.1)

Fig. 2. Free body diagram of foundation with its accompanied vibrated soil
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W(t)

Fig. 3 Free body diagram of the high tower building
W(z,t) = cp.%.UZ(z)+ Cp-p.U(2).U'(z,1) = W(2) + W (z,t)

The total turbulent wind force in y-direction as a function of time is
W(t) = _[ W (z,t) dz = _[ "C,pU(2).U (z,1) dz
0 0
(4)

The total turbulent wind moment as a function of time is

M (0= [Tz~ G eos ¢3(0) —%sin 03 (OW (z,1) dz

~ _[oc(z —%).W'(z, t)ydz = _[oc(z —%).cp.p.U(z).u'(z, ) dz (5)

2.2.2 Elastic relations of high tower building

Elastic relations of high tower building have the form
Fov = kv [Ze () = Ze O]+ v [Zc () = 2Ze (O], Ry = Ky [ye () = Ve O]+ 1. [V () - Ve (8]
Fov = Ky.[2o () = Ze (D] + - [25 () = e (D], Fay = Ky [yp () = YE (O] + 1. [V (8) — Y (1]
} (6)

2.2.3  Kinetic relations of high tower building

Applying Newton’s second law for the forces in z and y-directions and also the moments
about s, results in

DR =my 2y (1) =Ry —Fay, DRy =My (1) = —Fy — oy + W)

Wk C - * b * C * b - *
ZMSZ =J2.0,(t) = —Flv-[z-sm 9o (t) + E-COS(Pz(t)] +Fy -[E-COS 9(t) —E-Sm 92()]
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+ FZV.[—%.sin(pZ(t) +g.cos<p’;(t)] +Foy .[%.cosq);(t) +g.sin<p§(t)]+ My, () }
(7

The previous equation can be linearized in the following form

> Moy =~y B+ 20301+ R 2 030 +51 + Foy [ 5 0301+ o 2030+ 21+ My (9)
2.2.4 Deriving the system’s differential equations of motion

2.2.4.1 Application of the geometric relations of the foundation

Substitute from Egs. 1 in Egs. 2 of the elastic relations of foundation free body diagram
Fov = Ky .[21 (1) + 0.5b.97 (1) — 25 (t) — 0.5b.¢5 ()] + Ry .[21 (1) + 0.5b.9; (1) — 25 (t) — 0.5b.¢5(1)]

Firt = K- [y1 (1) = Y2 () + 0.5005 ()] + Iy [y1 (1) = Y5 () + 0.50¢ (1)]

Foy = Ky [2 (1) = 0.5b.¢; () — 25 (t) + 0.5b.5 (1)]+ 1y .[2; (t) — 0.5b.¢; (t) — 23 (t) + 0.5b.¢5 (1)]
} (8)
Fon = K[y (8) = Y2 (t) + 0.5¢0; (1)]+ 1y [¥1 (1) — Y2 (t) + 0.5¢9; (1)]

2.2.4.2 Application of the elastic relations of the foundation

Substitute from Eqs. 2 of foundation’s elastic relations in Egs. 3 of its kinetic relations results
in

my.Z1 (1) = ~(Key + 2Ky ).2¢ (£) + 2Ky Z5 (1) = (fey +21y). 21 (8) + 21y . Z5(1) + Key U, (1) + ey U, (1)

ml-yi(t) =—(kgy + 2kH)-yI(t) +2ky, -YZ(t) —cky -(P;(t) —(Tgn + 21y )yf(t)
} C)]

+21.Y5 (1) = Oy (1) + K .Uy (8) + gy U (1)
3161 (t) = [Kex +0.5b% ky .9y (t) +0.50% Ky .05 (t) —[Fe +0.50% .1, 1.¢1 (t) + 0.5b2 1y .4 (1)

2.2.4.3 Application of the geometric relations of the building

Substitute from Egs. 1 of geometric relations in Egs. 6 of elastic relations of the building
Ry = ky.[25(t) + 0.5b.¢5(t) — z; (t) — 0.5b.¢; (1)]+ 1y .[25 (1) + 0.5b.¢, (t) — 2 (t) — 0.5b.¢; (1)]

Fir ==Ky [y1 (1) = Y5 () + 0.5¢0; ()] = iy .[Y1 (£) = V2 (£) + 0.50¢, ()]
} (10)
F,y = Ky .[Z5(t) = 0.5b.¢5 (t) — Z; (t) + 0.5b.0; (t)] + 1y .[Z5(t) — 0.5b.65 (t) — Z; (t) + 0.5b.¢p; (1)]

For = =K [y1(1) = y2(t) + 0.500 (1) 1y [V1 (1) - V2(t) + 0.5c2 ()]
2.2.4.4 Application of the elastic relations of the building

Substitute Eqgs. 10 of building’s elastic relations in Egs. 7 of its kinetic relations leads to the
following differential equations
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m,.75(t) = 2ky,.z; (1) — 2Ky .2, (1) + 21y, .27 (1) — 21y, .25(1)

M55 (1) = 2Kyy.y3 (1)~ 2Ky .5 () + CKyg-0 (1) + 203055 (8) = 26495 (8) + Criy 3 (6] + W(T)
} (11)
3,65 (1) = —ckyy.yi (1) + 0.5b2 ky . (t) + Ck .Y (1) — (0.5¢2 K, +0.5b2 Ky ).5 (1)

—cry.y (1) +0.50% 1y .1 (1) + cry .5 (1) — (0.5¢2 1 +0.5b2 1y ).y (1) + My (1)
2.2.4.5 Arranging the differential equations of motion

The differential equations of motion of both tall building and its foundation can be
summarized in the form

my.Z3 () + (Fey + 21y )21 (1) = 21y 25 (1) + (Key + 2Ky )21 (1) = 2Ky Z5(1) = Key U, (1) + ey U, (1)
My Y1 (1) + (e + 264).¥3 (1) = 2.5 (1) + Oy 9 (1) + (K + 2Kpy).1 (8) = 2Ky 5 (1) + k@5 (1) =
KenUy (8) + gy U, (1)

3,61 () +[rex +0.5b%.1, 161 (1) — 0.5b2 .1, . (1) + (K +0.5b2 Ky, ).; (t) — 0.5b2 Ky, .05 (t) = 0
My.7,(t) = 2ry.27 (1) + 2y .25 (t) — 2Ky .23 (1) + 2Ky .2 (1) = 0
M 75 (1) = 26 Y7 (£) + 21 Y5 (1) = Oy 9 (£) — 2Ky (1) + 2Ky Y5 (£) — iy 0 (1) = W(E)

35 .5(t) +cry.¥; (1) = 0.5b2 1, .y (1) —cryy Y5 (1) + (0.5¢2 1 +0.5b2 1y, )., (1)
+ckyy.y; (1) — 0.5b% Ky .p (1) — ck Y5 (1) + (0.5¢2 Kk +0.5b% Ky )., (1) = My (1)

m 0 0 0 0 ofz®w] [ev+2n O 0 -2y 0 0 T40]
0 m 0 0 0 O0fy [ 0 0 -2, Chy AQ)
0 03 0 0 0| oo 0  rg+05b, 0 0 ~0.5b°r, Q)
00 0m 0 O0fM] | -2r 0 0 x 0 0 2,(t)
0 0 0 0 m Oy 0 - 2x, 0 0 2y —Chy ¥o(t)

(0 0 0 0 0 J|dbm| | O chy —05b%, 0 —cry (05C7r, +0.50%r,) | g (t)
Tkey + 2Ky 0 0 ~2%k, 0 0 Tzw]

0 Key + 2Ky 0 0 —2ky ckyy y; (1)
oo 0 Kek +0.5b%k,, 0 0 ~0.5b%ky, 1 (t)
—2ky, 0 0 2ky 0 0 z,(t)

0 2k, 0 0 2ky —cky 0
o ckyy ~05b%k, 0 —cky (05c%ky +05b%ky) | o3 (1)
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Key ey 0 0 0 Of g(t)

0 0 key fen 0 Of &(t)

0 0 0 0 0 0f nM

0 0 0 0 0 0f nM

0 0 0 0 1 0f w(

L0 0 0 0 0 1|My()

(12)

3 Derivation of system equations using Lagrange’s method

The previous obtained system differential equations 12 of motion can be verified using
another derivation method, like Lagrange’s method using the following Lagrangian
Differential Equation

< .
dio | _a % ~Q=> FVi L=E-U , "= 1y
dt 00k n 2

Mk Mk — 4k
(13)
Qk : General forces, F; : External forces, and v, : Velocity
3.1 Lagrangian function
(@) Kinetic energy of the total equivalent system
1 L *2 1 L x2 1 L %2 1 L x2 1 L x2 1 L x2
E= 5 mz, (t)+ Em1Y1 (t)+ E‘]l(pl (t)+ 5 m,z, (t)+ Em2Y2 (t)+ EJz(Pz (t)
(14)

(b) Elastic potential energy of the total equivalent system

U =2 Keul21(0 - Us(OF + 5 Kenly; (0 - Uy OF + kol (9+ 2 ky[26(0- 26 (OF

+ Kl - Ve (OF + 2k 220 - 25 OF + S kulyp (0 - Yo OF
(15)
(c) Lagrangian function

Using Egs. 1 and 14-15 to obtain the following Lagrangian function

1 %2 1 . *2 1 . %2 1 L %2 1 . %2 1 L %2
L:Emlzl (t)+5m1Y1 (t)+EJ1(Pl (t)‘*‘EmzZz (t)“‘Emz)’z (t)“‘EJz(Pz Q)

— K230 - Uy (OF =2 Keulyi (0 - Uy (OF - ecor

—%kv[zi(t) +0.50.¢; (1) — 23 (t) — 0.5b.5 ()] —%kH[yi(t) —y5(t) +0.5c.95 (1)]

—%kv[zi(t) —0.5b.¢; (1) — z5(t) + 0.5b.95 (1) —%kH[yi(t) —y5(t) +0.5c.5 (1))
(16)
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3.2 Rayleigh’s dissipation function

The Rayleigh’s dissipation function can be derived as

1 2 1 L . 2 1 L * . 2 1 Lx2
R = =T =—ry[z,(D)-U, )]° +=r, t)—-U, ()] +=r, t
;62 Ve =5 Tev[Z1 (0= Uy (OF + ~ ren[33 (0 = Uy (OF + 5 reacor ()

+ 22 () + 05651 () - 25(0) - 050350 + ZrlJ (0 - V(1) +05e3 (0

3 I ~0.5D.6; () - 5(1) + 0.5033 0]+ TI3; (0~ 15 (0 + 0503 (0

17)
3.3 General external forces
ov; or. * *
Q=Y FF—==>» E.—=- Where F =W,F, =My, ,v; =V,,andv, =¢
K i i aqK d aqK 1 2 W 1 2 2 2

3.4 Deriving the differential equations of motion

(a) Case of q, =z, (t)

d| oL > oL * *
{ } =my.Zy (1), ——=—~(Key +2ky)z; (1) + 2ky .2, (1) + Ky .U, (1)

dt| az; (1) oz, (1)

aER L * L x M
—— =gy +2ry).21(t) - 21, .2, (t) —Tey.U, (1), and Q,- =0
oz, (t) !

Substitute from the equations of case (a) in Eq. 13, the first differential equation of motion
can be obtained

M2y (1) + (Tey + 21y )23 (1) — 2ry 25 (1) + (Key + 2Ky )21 (1) — 2Ky 25 (1) = Key U, (1) + ey U, (1)
(18)
(b) Case of q, =y; (1)

d x oL * * *
a{%} =m..y, (1), m =—(2Ky +Kgp).y1 (1) + 2Ky, (t) — ckyy .o (1) + kegyUy (1)

o

—— = (2ry + Tg). Y1 (1) = 2 Y5 (1) + Cry .9 (1) — rEHUy(t) ,and Qy* =0
oy, (t) '

Substitute from the equations of case (b) in Eqg. 13, the second differential equation of motion
can be obtained

My Y1 (8) + (e + 20).Y1 (1) = 205.¥5 (1) + €95 (1) + (K + 2K4).y1 (1) = 2Ky .y 5 (1) + iy 0 (1) =
KenUy (1) + gy U, (1) (19)

() Case of g, =0} (1)
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d| oL aL b?

—| = [= .0 (1), ——=—(Kex +—Ky) (Pl(t)‘*‘ I(v (Pz(t)

dt {a(Pl (t)} ogy (1) 2

OR

b?
8(1)I(t) = (e +—- rV)(Pl(t) rv ¢5(t), and Q

Substitute from the equations of case (c) in Eqg. 13, the third differential equation of motion
can be obtained

.67 () +[rex +0.5b2.1y 1.9 (1) — 0.5b% .1 .5 (1) + (K +0.5b2 Ky, )1 (1) — 0.5b2 Ky, .o (t) = 0

(20)
(d) Case of g, =z,(t)
d| oL oL * *
— ———=2ky,.z;(t) = 2k, .z, (t
dt{az’;(t)} m,.Z5(t) PR 1(D) = 2ky.z5(1)
a;n; =-2r,.2; () +2r,.2,(t), and Q . =
For 22
Similarly, the fourth differential equation of motion can be obtained
M,.75(t) = 2ry.2 (t) + 2y .25 (1) — 2Ky, .Z; (1) + 2k, .Z, (1) =0
(21)
(e) Case of g5 =y, (t)
d| oL * * *
———=2Ky.y; (1) — 2k .y, (1) + ck .o, (L
dt{é’yz(t)} Fo(t), 3)/2() n-Y1(t) H-Ya(t) +ckyy.pp(t)
M o, (1) + 20, V(O —cry.0(t) , and Q.. = W(t)
ay;(t) H-J1 H-Y2 H-%¥2 ) Yy
Similarly, the fifth differential equation of motion can be obtained
M, 5 (t) = 2097 (1) + 20 Y5 (1) = g 0 — 2K, 3 (1) + 2K .y 5 (1) — kg = W(E)
(22)
(f) Case of g4 =,
d| oL oL b? c? b2 .
——:J.t,*ktktkt—k k.t
dt{@(});(t)} 2:0,(t) 2on() ckyy.yp () + v @1 (1) +ckyy .y, (1) = ( HT V)92 (t)
N b? b2 ¢ |«
—— =y () - rv (1) —cry YZ(t)‘*‘( +—1)-¢,(t) , and Q‘p* =My (t)
0y (1) 2 2

Similarly, the sixth differential equation of motion can be obtained

5. 5(t) +cry.¥1 (1) = 0.5b2 1, .y (1) —cryy Y5 (1) + (0.5¢2 1 +0.5b2 1y, )., (1)
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+0kpy.Y (£) = 0.5b% Ky, .7 (1) — Ck .y (1) + (0.5¢2.K, +0.5b2 ky, ). (1) = My (t)

(23)
Equations 18-23 can be written in the following matrix form
(rEV+2rV) 0 0 _Zﬁ 0 0 ZI
m, m,
ey + 21 2r, cr
B E— 0 EH H 0 0 _&H ~ZH
10000 0[z T m, m, Y1
01000 Ofy; 2 2 .
Yi 0 0 21 + b1y, 0 0 bry o
00100 Ofg 2), 2)
o |F 2r, 2r.
0000 10|y, m, m; 2
x 2ry 2ry Cry
0 00 O0O01 9, 0 - 0 0 — -— x
B - m, m, m, Y2
0 oy _b’ry 0o % (c?ry +b%ry)
L Jy 2], Jy 2], __(bz_
+
my my
0 Kep + 2Ky 0 o 2Ky cky v
my my my
2 2
0 0 2kex +b’ky 0 by o
2J; 2J, _
ﬁ 0 0 2k_V 0 0 Z*
m; m; 2
0 2k 0 0 2k, ~cky )
ms ms m; Y2
0 ckyy bk o _Cku c’ky +b%ky )
| Jy 2], Jy 2], JLe2 ]
_kﬂ Tev. 0 0 0 0_
m m - .
o g(t)
0 0 EH EH 0 0 E_’(t)
m m
0 0 0 0 0 0 n)
0 0 0 0 0 o0 0
0 0 0 o L of ww
m
2 1 _MW(t)_
0 0 0 0 0o —
L Jz |
(24)

3.5 Normalization of the system differential equations of motion

The system differential equations of motion of the high tower building with its foundation can
be presented in a dimensionless form using the following quantities

210 =207y = 28 0= 20 230 = 220y = Y2 (1 = 220 = 21 ) = -

So

ZO (o) (0] (o) (o)

where z, =y,=1cm, &, =n, =1cm and ¢, =1rad.

0o
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Applying the time normalization through the following transformations

T=0,t, dt=wmydt,

dz
where o, =1rad/s and —=o,—,
o t a0 o

dz

d%z
= (,L)g 7 Qlt
dt

Q

=—1=mt

20

Therefore the differential equations of motion will be written in the following dimensionless

form
(fev +2ry)
my @,
- Tor T 0
1000 0 0]z()
01000 0fy(x) 0
00100 0feR)|,
00010 0z _2
0000 1 0fyy(v) UPION
0000 0 1]@y(r)] 0
0
mymg
m; g
0 0 2k gy +b2ky
PANO
B 2k\,2 0 0
m,®,
0 - ZkHz 0
m,m,
0 cKnYo _ bky
L szS‘Po 2J2w§
| kE\Zl lev 0 0
mym,z, mym,z,
0 0 Ken "En
mosY, MGy,
0 0 0
0 0 0
0 0 0
0 0 0 0

Iey + 21y

mlwo

2ky,
mzwo

0 _ﬂ 0 0
mlwo
0 0 _i S
mlwo mlwo
21 +b7ry, 0 0 _b’r
2]),m, 2),m,
0 i 0 0
mzwo
0 0 2ry o cry
m2('00 m2('00
b2 2 2
b 0 oy (e +bry)
2,0, Jr0, 2),m,
0 0 [2,(7) |
_ 2ky k@,
mlwg mlwgyo ya()
b%k
0 - T
2le§ 04(7) B
0 0 Z,(7)
2k ckyo
Hz - Hz o yZ(T)
mzwo mzwoyo
ckpy,  c%ky +b%ky 0,(%)
2 2 L -
‘]Zwo(Po 232030
0
0 &) |
&(1)
n(v)
n(v)
W(r)
My (T
L Mw)
‘]chz)(Po |

(25)

29|
y1(x)
(1)
z,(x)

Y, (1)

Le2(0)]
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4 Analytical solutions using the general modal analysis method

4.1 Eigen value problem

4.1.1 Homogeneous differential equations without damping

* *

M (M) +K'x (1)=0

(26)
Assume that the exponential solutions of Egs. 26 have the form
x*(t)=xe""
(27)
Applying the solutions of Egs. 27 in Egs. 26 leads to the general eigen value problem
(-o’M +K')xe“ =0 or (A-o’)x=0
Where the matrix A has the form
[ key +2ky 0 0 2ky, 0 0 ]
m; m;
0 Key + 2Ky 0 o 2Ky ckyy
m; m; m;
0 0 2Ky +b%ky 0 0  b’ky
*-1 *
A-M"TK = ” 2], ” 2],
- 0 0 — 0 0
m, m,
0 2k 0 o 2K cky
m, m, m,
0 cky bk o _Cku C’ky+b’ky
| J, 2J, J, 21, |
(28)

Using equation 3 one can obtain 12 eigen values (+o;,+ ®,,+ 05, t0,,+ 05, + ®g) and 6 eigen
VECHOrs (X1, X3, X3, X4, X5, Xg) -

4.2 Modal matrix

The modal matrix has the form
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)le )ZlZ )ZlS )214 )ZlS )z16
3221 )222 )223 3224 )225 3226
%31 3232 %33 %34 %35 %36
7241 %42 %43 3244 %45 3246
%51 3252 %53 %54 %55 %56
_%61 %62 %63 %64 3265 266_

% = (X1 %, %, Xy, X5, Xg | =

X, Y11 X21 X3 Xar Xst Xew
X} Y12 X2 X3 A4z As2 ez
. = %% _ ):613 ):623 3:633 3:643 ):653 3:663
- Xy X14 A24 A3s Aas Asa Xes
X; Xis X25 Xas Xas Xss Les
_:g_ [ %16 X26 X3 Xas Xse Kes |

4.3 Decoupling of the system differential equations

The transformation of coordinates can be carried out using the equation
X*=y.9

and the system of the vibration differential equations will has the form

Where "M =1, %' Ry ~diag.[2Dw], 3" K y ~diag.[0’], and yF (1)~ diag.[0°]Q

When the damping forces of the equivalent system are smaller than its elastic restoring forces,
then the coupled terms of the transformed damping matrix can be neglected without any great
error. The decoupled differential equations of the system will have the form

1§ +diag.[2Dw] § + diag.[0°]q = diag.[»*]Q

G () + 2Dy, 4, (1) + o q, () =0f Q, (1) | n=1,2,..6

[1 0 0 0 0 0@, (t)] [2Dy0, 0 0 0 0 0 Jg.u)]
0100 0 0], 0 2D,0, O 0 0 0 [a,(t)
0010 0 0fdst L0 0 2D,0; O 0 0 | 4gs(t) N
00 01 0 0fd, 0 0 0 2D, O 0 | qgs)
0000 1 0fs(t) 0 0 0 0 2Dso; 0 | gs(b)
0 0 000 1]ge(t)y] | © 0 0 0 0  2Dgog | Gg(t)|
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o> 0 0 0 0 fa®] |o* o 0
0 @5 0 0 0 04| |0 o 0 0 0
0 0 o3 0 0 O04)f |0 0 i 0 O
0 0 0 of 0 Ofq®| |0 0 0 o O
0 0 0 0 o Ofa®| |0 0 0 0 o
|0 0 0 0 0 w|dM®] |0 0 0 0 0

The general external excitations of the system are

Q(t) =diag.[’] ™. %" B'U"(t)

Uo? 0 0 0 0 0 [xu X2 %zt Za %st e
0 loi 0 0 0 0 ||X2 %22 X322 X4z Xs2 ez

_| 0 0 1/(0% 0 0 0 %3 X2s Xss Xa3 XAs3 Xes
0 0 0 o2 0 0 | X4 %24 X3a Xas Xsa Xes
0 0 0 0 o2 0 |Xis %os Xas Xas Xss Xes
0 0 0 0 0 loj|Xie Xee X Xas Xss Xes
N AU 1
Q(t) =diag.[-51.% . F (1) and Q,(t)=—5.xn-Fa(t),
o) oy

_(1/(°f a1 (1/(012)5(21 (1/0)12)7231 (1/(012 Wa1 (1/(012 Y51 (1/(°f )7261_ [
Uoite Wodte Wod)te Uoiie Uoi)is Uor)is

_ (1/(05)5(13 (1/(05)5(23 (1/(05)5(33 (1/(0%)7(43 (1/(0%)7(53 (1/(05)5(63
(1/0)?1))214 (1/(0?1)5(24 (1/(0?1)5(34 (1/(0?1)5(44 (1/(0?1)5(54 (1/(*):21)7264
(Uoi)s (Vodlis (Hos)s Mos)is Uos)is (Lof)iss
|(Uod)ts Uod)is Uod)is Uod)is Uod)iss Log)kes

Qn (t) =

(1/(0% a1 -Kev
(1/(05 Wz Kev
(1/(0§ Mas-Kev
(1/(0121 Maa Key
(1/(0§ Was-Keyv
_(1/(0§ s Kev

(U )ty Tey
(U510 Tev
(V53 ey
(V) aa Tev
(Vb )5 Tev
(l/wé 16 -Tev

(1/(912 W21 -Ken
(1/(05)%2 Ken
(1/(0§ MX23-Ken
(1/(031)5(24 Ken
(1/(0§ M2s-Ken
(l/(né )26 -Ken

(U )01 Ten
(U65) X 22 Ten
(103 )% 23 -Ten
(U623) X 24 Ten
(U623) % 25 -Ten
(l/wé 26 Ten

0 || Qu(t)

0 || Qx()

0 || Qs(t)

0 || Qu(t)

0 || Qs(t)
og || Qs (1)
Key ey 0

0 0 Key

0 0 0

0 0 0

0 0 0

0 0 0

n=1,2,...

ev Tev O
0 0 Key
0 0 0
0 0 0
0 0 0
0 0 0

(1/(912 Ms1-1
(1/(05 Ms2-1
(/ (0§ Mss 1
(Uoi)xss1
(/ (Dé ss-1
(Uoog xss-1

Qn()= iz [Bru&(t) + Bpa&(t) + Brgn(t) + Byi(t) + BrgW(t) + BpgMy (1)]

n

o

_‘
m
I

O P O O O O
O O O o o

o O O o

m

o
o r O O o o
» O o oo o

o O O o

(1/(0:%)5(61-1 [

(1/w§)5(62 1
(1/(0§ Mes-1
(Ved)yes1
(1/(0§ Wes-1

IMw(®)]
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(29)

&(1)
&(t)
n(t)
(t)
W(t)
My (1)

&(t) |
&(t)
n(t)
()
W(t)

gty |
E(1)
n(t)
n(t)
W(t)

(Ued )61

[ My (1) |
(30)

Applying the total turbulent wind forces W(t) in y-direction and the total wind moments
Mw(t) on the previous equations.

A A
Q) == [Buik(0)+ Brob(0)+ Bran() B0+ Brs [ Cpp. UV (2.1 44 +Bos [ 2= 2. C, p U@ (2. ) 4]

(31)

The decoupled system of differential equations can be presented in the following form
M4y (t) + 1 (1) + Kydy (1) = xF1 (1) + %202 (1) + x31F5 (1) + 2aaFa (1) + 2525 (1) + x6af6 (1)

MG (1) + 105 (1) + K0 o (1) = xaafr (1) + %22F2 (1) + %323 (1) + % 42f 4 (1) + %525 (1) + 262f6 (1)



168 A. El-Kafrawy/ Journal of Civil Engineering (IEB), 40 (2) (2012) 149-180

M3 03 () + 1303 (t) + Ks03(t) = 245F1 (1) + 1232 (1) + x33F3 (1) + % 45f 4 (1) + xs3f5 (1) + x65f6 (1)
} (32)
M40 4 (1) + 1G4 (1) + K04 (1) = x24F1 (1) + x24T 2 () + A 3aF3 (1) + %044 (1) + %54 F5 (1) + 26af6 ()

Mg Qs (t) + r5Gs(t) + KOs (1) = %151 (1) + %252 (1) + %3573 (1) + %454 (1) + x55F5 (1) + x65f6 (1)

Mg (t) + rel (1) + Kol (1) = %161 (1) + %262 (1) + %36F3 (1) + Xa6F 4 (1) + x56F5 (1) + 26T (1)

Gi(t) + (%)qi )+ (%)qi = (%)[kwﬁ(t) ey E(O]+ (%)[kEHn(t) +Ten(t)] + (%)fg(t) +

L (0)+ (21 (1) + (2o (1)

(33)
From the previous equations, one can obtain the following imaginary transformation
functions

X*l_i[kev +jreyQ] %-é[kev +JrevQ] %[kEV +jreyQ]
Hy(Q) = —m L -k
T o))+ i@D0D) g (P jep, ?) p-(2)l+ D, 2)
W; W; W; W;
%[kEH +jrenQ] %'1
H,y(Q) = — & | Hy(@) = | ,
- (%24 @D, ) - (4214 jep, &
©; ©; ; ©;
Xai 4
K.
H,(Q) = | } (32)
- (%24 @D, )
(,Ui (,Ui
Lsi g Lei 4
k: k: I
H5(Q) = ' , He(Q) = ' : where —— = 2D,w; and
n- (214 jep, ) - (2214 j(2p, & m,
W; W; W; W;
Ki_ 2
m;

A dynamical system with known properties responds to a dynamical loading in a known
manner, provided the time-description of the loading is available a priori. Such description is
however not possible in case of the excitations due to earthquake ground motions or
fluctuating wind loads. Therefore, the safety of a structural system has to be ensured by
stochastic modeling of these motions for perceived seismic hazard at the site of the system
and by predicting the structural response in probabilistic sense with the help of well-known
concepts of random vibration theory. This theory estimates the statistical variations in the
peak structural response due to possible variations in the time-description of the excitation
(there may be several ‘different looking' time-histories corresponding to a given
characterization of the excitation). The classical random vibration theory makes use of the
frequency distribution of input energy as obtained from the Fourier Transform of the
excitation. However, since Fourier Transform gives only an “average' energy distribution in
an excitation with time-evolving structure, this theory is insufficient for those cases where the



A. El-Kafrawy/ Journal of Civil Engineering (IEB), 40 (2) (2012) 149-180 169

non-stationary processes cannot be modeled as stationary or quasi-stationary. As a natural
extension to double Fourier Transform for such processes is not considered to be practical, a
large amount of effort has been devoted to modeling a (slowly-varying) non-stationary
process through modulating function-based power spectral density function (PSDF). The auto
power spectral density function of the response as a result of random wind and earthquake
excitations with respect to general coordinates has the form

6 6
Sa, @)= D HI(Q)H(Q)S 1, (@)
r=1 s=1
Sq.q, () = H1(Q) Hy(Q) S (Q) + Hi (Q) Hp(Q) Sy (Q) +..ov.. + H1 (Q) Hg (Q) Sir, () +
H2(Q) Hy(Q) S, (Q) + H3(€) Hy(Q) S, (Q) + oooc. + Hy(Q) Hg (Q) S,
He(Q) Hy(Q) St (Q) + Hg () Hy (Q) St (Q) + ...+ Hg (Q) Hg (Q) Sy 1, (Q)

(Q)+..... +

(35)
The cross correlation function of excitation functions with respect to general coordinates is
T/2
.1
Ro,o, (M= lim = [Qi))Q;t+)at
-T/2
T/2
= T'Tl)? I[Xlifl(t) +%aif2 (1) + .+ 26ife (D Degjfa(t+ 1) +225f 2 (t+ 1) + .+ 26T (T + T)] dt
-T/2
= Xli%lijlfl (v)+ XliXZijlfz (D) +.+ XliXBijlfe (v)+ XZinijzfl (v)+ XZiXZijzfz (v)
+ o AaikejR 1,0, (D) +... +X6inij6fl(T) +Xeik2j R, (D) +.t X6iX6jR 14t (v)
(36)
The cross and auto power spectral density functions of excitation functions are
N N .
Sq,q, () :Z Zin %1 St, 1, () : Str, () =HA(Q).HA(©).54(Q2) ,
k=1 I=1
St.f, (Q)=HA[ (Q).HA|(Q).S.(Q) (37)
f,(t) = u@.&(t) + u(2).&(1) ,
f,(Q) = u(1).£(Q) +IQ u(2).£(Q) =[u(l) +iQ u(2)].£(Q) = [u@) +iQ u(2)].[E(Q)/iQ]
The excitation functions can be represented as
6 6 6
Qi) = xni Fal®) , Q) =i Fi() , Q)= u; Fi() ,
n=1 i=1 =1
6 6
Qr(t) Qs(t+T) = Xir fi(t)-st fj(t) (38)
i=1  j=1
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Key&(t) + ey E(t)
[,(0)] Kerm(t) + fi(t) U +u()E() |
o (t) 8 u@3)n() +u(@)n(t)
G I A 1 0
Qut)= o X(l) f(0)| o Zo Icp.p.U(z).u'(z,t)dA o o 0
fs (1) . u(d)v(t)
Lfs(0)] [e- %). C,p-U(2).U'(z, 1) dA uEw(®)

1 1 1 1
Qz(t)=w—§-l;)-£(t) , Qs(t)=w—§-l;)-i(t) , Q4(t)=w—§-l(T4)-£(t) , QS(t):w—g.g;).z(t) ,

_1 7
Qe(t) = o ey T (39)

The cross correlation function of excitations is
T/2 T/2

- A 1
RQrQS(r):Tlggo;_Tj/SAt)Qs(tﬂ)dt :T'T!o?_iz[w_% O 7 g1+l

1 T/I2 N N 11 N N 1 1 1 T/2
- lim = j =, 2 FiOF D dt = = 1L im = Ifi(t)fj(t+r)dt
1 1y T/2 1 1 LY
= zZZlirl,s J.f (t)f (t+T)dt_ 2 ZZZ lr jS fifJ(T)
O Os 55 =1 _-|— 2 O 05 53 j=1

11
=— — Iaras-Rer, (0) + Asrkss-Rr, (0) + AseXes R, (1) + Horkss- Rt (V) + Xerkes-Re,t, (V)]
o o

11
:_2_2-{X1rX13[kéV'R§§(T) +Key ey Ry (1) + ey Key R (1) + rév-Rgg(T)]Jr
r S

[sr x5 Ry, () + XsrXes Rt () + Xerss Ry, (7) + X6rXes R, o

The cross power spectral density function of excitation functions has the form

11
S0.0. (V= —— Ltartaslkey See (1) + Kev-tew Seg () + ey Key S (7) + réy Sy (D] +

r S

— 2 2 2 2
CfZ-PZ 'UZ(Z)'Suu () [srxss -|X11(Q)| + AsrAes -|X12 (Q)| + XerXss -|X21(Q)| + XerXes -|X22(Q)| I}

1 1 N N
sQrQS@)——Z—ZZZ K ko St (@) (40)
O Og 3 j=1

The differential equations of motion can be written in the form
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.. R; . K; 1
Gi () +—L6;(1) +—=0; (1) = —.Qi(t) = o Qi (1)
mj mj mj

1
_2_
i

.. . 1 . 1 .. .
8 () + 2D;0;.G; (1) + o .q; (t) = k—mi? Qi(t) = 0? Qi () =02.Qi(t) with Q;(t)= Qi(t)
i i (O] i
(41)
The cross power spectral density function of the vibration response with respect to general
coordinates is

Sq.q, () =H (Q).H,(Q).Sg o, () (42)

The cross power spectral density function of the vibration response with respect to original
coordinates is

Sxox, (=D D iittsj-Sq,q, (?) (43)

i=1 j=1
Substitute from Eq. 42 in Eq. 46 results in

n n
Sx,x, (=D D iittgiHi (Q)H(Q) Sg 0, (@) (44)

i-1 j=1

Substitute from Eq. 40 in Eq. 44, one can obtain the cross power spectral density function of
the response with respect to original coordinates of the form

Sx,x, (@)= Z Zxr.xs,H (Q)H(Q)( —)(— )Z Zxk.x., St,r, (Q) (45)

i=1  j=1 'klll

and the auto power spectral density function of the response with respect to original
coordinates of the form

6

1 1%
Sx,x, (@)= Z an.xm HI@QH{ Q-1 X s St () (46)
i=1 =1 L Jr=l s=1

4.4 The power spectral density function of the excitations
4.4.1 Correlation function of the excitations

The correlation function of the excitations with respect to general coordinates is
T/2

Ro,q, (1= lim = IQ () Q. (t+1)dt (47)

—T2

Substitute from Eq. 32 in Eq. 47 results in
T/2
1

A
Ro,, (1) =lim % j B+ Bro&(t) + Ban(t) + B,yn(t) + BrSICp.p.Ua).u'(z,t)dA -
-T/2°°T
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A
B, j (z —%). C,p.U(2).U'(z, t)dA].%[leé(t + 1)+ Boé(t+ 1)+ Bgn(t+1) +
A A
Bt + 1)+ BS5J.Cp.p.U(Z).U'(Z,t+1‘) dA+ Bs6J.(z ‘%)' C,p.U(2).U'(z,t+ 1) dA] dt

T/2
Roo, (= lim = [ { BuBaZ(UE(+ )+ BuBZ(DE( + 1)+ BuBaE(n(t+ 1)+ BaBuEDA(t+1)+
-T/27" S

A A
B,,BLE(1) j Cpp.U(2).U' (2, t+ 1) dA + B, BE(t) j (z- %). Cpp.U(2).U' (2, t+7) dA +

BraBa&(DE(t + 1) + BpBo&(t)a(t + 1) + BpBg&(tn(t +1) + BBy ()t + 1) +

A A
B,B.:E (1) j Cpp.U(2).U' (2, t+ 1) dA + B ,Byé(t) j @ —%). C,p.U(2).U'(z,t+1) dA +

BraBan(DE(t + 1) + BaBan(tE(t + 1) + BaBgn(tin(t + 1) + BsBym((t + 1) +

A A
B,:B.n(t) j Cpp.U(2).U' (2, t+1) dA + BsBn(t) j (z- %). Cpp.U(2).U' (2, t+1) dA +

BruBan(t)&(t + 1) + ByBon(HE(t + 1) + ByyBan(t)n(t + 1) + By Byn(t)n(t + 1) +

A A
B,,Bii(1) j Cpp.U(2).U'(2,t+7) dA +B,,Bygi(1) j (z—%). C,p.U(2).U'(z,t+17)dA+
A A
Br5le[J.Cp.p.U(Z).U'(Z, t)dALE(t+17) + Br5Bsz[J. Cop.U(2).U'(z,) dALE(t +7) +
A A
Br5|353[f C,p.U(2).U'(z,1) dAl(t+ 1)+ BrSBS4[J.Cp.p.U(Z).U'(Z, t) dAL7(t + 7) +
A A
Br5835[J.Cp.p.U(Z).U'(Z,t)dA].[J.Cp.p.U(Z).U'(Z,t+7:) dA]+
A A
BrSBS(S[J.Cp.p.U(z).U'(Z,t)dA].[J.(z ‘%)' C,p.U(2).U'(z,t+ 1) dA]+

A A

BrGle[J. @ ‘%)' C,p.U(2).U'(z,1) dALE(t + 1) + Br6Bsz[J.(z - %). Cop.U(2).U'(z,1) dALE(t + 1) +
A c ' A c '

BreBS3[J.(z ~2)-Cop U@V @ ) dAIn(t+) + Br6BS4[J.(z ~2)-CopU@.U 2 Y dALi(t+1)+

A A
Br6BS5[J.(Z ‘%)' Cp.p.U(z).U'(z,t)dA].[J.Cp.p.U(Z).U'(Z,t +1)dA]+
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A A
Br6836[j(z —%).Cp.p.U(Z).U'(Z,t) dA].[I(Z—%).Cp.p.U(Z).U'(Z,t+I) dA]

11
2 2
r Os

Roq.(0)=
w, O

{ BuByR e (0 +BrBoR: (1) + ByBgR, (1) + BBy Ry (1) +

A A
J— C J—

BrlBsg)J.Cp.p.U(Z).RéU- (t) dA + BrlBsej.(z ~)-CopU@IR,, () dA+
BrZleRéé(T) + BrZBszRéé(T) + BrZBSSRén (v)+ BrZBs4R§h (v)+

A A c
BrzBsg,J.Cp.p.U(Z).RéU- (t) dA+ Br2836j.(z ~)-CopU@Ry (1) dA+
BisBy Ry (1) + BrsBsz-Rng(T) +B3BsgR (1) + BgByy Ry (1) +

A A c
Br3BS5J.Cp.p.U(Z). R, (dA+ Br3Bsej.(z ~)-Cop @R, () dA+
BuBgRye (1) + BuBR hg(T) +BuBgRy, (1) + ByByR iy (1) +

A A
— c —
Br4BS5J.Cp.p.U(Z).RhU- (t)dA + Br4836j.(z ~)-CopU@R, () dA+

A A A
BrSleJ.Cp.p.U(Z).RU-é(r) dA+ BrSBszj. CopU@)R (1) dA+ Br5|333j CopU@)R ,, (1) dA+

A A A
Br5BS4J.Cp.p.U(Z).RU-ﬁ (x) dA + Br5|335j jcg.pz.U(zl).U(zz).R s, (D)-dAL0A,

A A, A
— — c c —
BBy, J' J' C2p2U(2,).U(z,)(2, ~R sy, (904 dA, + Br6leJ.(z ~)-CopU@R (1) dA+

A A
C — C —
Br6Bszj.(z—E).Cp.p.U(z).RU-é(r)dA+Br6BS3J.(Z—E).Cp.p.U(z).RU-n(r)dA+
A A Ay
BB [J.(Z—E)C U@2)R, . (t)dA+ BB I jcz 20(2)).U(2,)(z - )R, . - (1).dALdA, +
r6Ps4 % p-P- Ruy 16 Os5 pP -UN21)-UNZ2)\2y o/ uyu; (AR
Al AZ

B,Bes I I (zl—g)(zz—%)C,Z).pz.U(zl).U(zz).RU-lu-z (x).dA_dA, } (48)

Since the wind velocity U(z,t) and the underground excitations &(t), n(t) are uncorrelated, the
following correlation functions must have the values of zero.

Rau' (1)= Réu' (1)= Rnu' (r)= Rf]U' (r)=0 and Ru-é(r) = Ru'é(r) = Ru'n (r)= RU-T.] (r)=0 (49)

4.4.2 The power spectral density function of the excitations
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The cross power spectral density function of the excitations with respect to general
coordinates is

Sq,, () =F{Rq,q, (0} = J. R o, ()€ dt (50)

Substitute from Egs. 48 and 49 in Eq. 50 results in

r S

11
Sq.o, ()= I Sl { Br1BsR e (1) + B1iByR : (1) + BBgR e, (1) + BBy R (1) +B By R, (1) + BoBoR ;. (1) +

Br2BsRy, (+ Br2BuRy; (1) + BBy Ry (1) + BrsBsz-Rng(T) +B3BwR (1) + BBy Ry (1) +

BruBguRye (1) + Br4BszRf]g(T) +BuBgR (1) + BBy Ry, (1) +

A A
BBy j j C2p? U(z)U(2,)R . (1).dA, GA, +

Al AZ
S — c
Br5|336j I Chp* U(2)0(2)-(2; = )Ry (1)-0A; 0A, +

A A,
C — —
BBy I I (21 =) C5p* U@) U(zo) Ry, (1).0A 0, +

Al AZ
c c — = —ioe
BrGBs6J. J.(21—5)(22—E)Cf).pz.U(zl).U(zz).RuiU-z(r).dAl.dAZ Lo e

11
o o { B1BsiSe: () + BrlBszsgé(Q) +B1B3S:, () + B 1By Sy () + B12BuS:, Q)+ B2BpS;: Q)+
r S

S, ()=

B12BssS;, @+ B12BS:;, (Q) +B3Bq; S, (Q) + BrsBsz-Sng(Q) +B3Bg3S,, () + Bi3By S, () +
BaBuSie () + BryBypS,: (Q) + By By3S;, (Q) + BBy, S, () +
A A
Br5|335j Icg.pz.U(zl)U(zz)sUlUZ(Q).dAl.dA2 +

A A,
T c
BrsBss J. J. C;Z)-PZ-U(Zl)U(Zz)-(Zz —E)Suluz (Q).dA.dA; +

AL A,
C — —
BBy I I (21 =) Chp" U(2) U(z,) Su,u, () dALIA, +

A A,
BBy I I (zl—%)(zz—%)c,%.pz.U(zl).U(zz).sUlUZ(Q).dAl.dA2 ) (51)

The wind velocity U(z) depends on the height of the building, according to the following
equation
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U(z)= (ﬁ)“ U(H) (52)

Using Eqg. 52 in Eq. 51

11
SQrQS (Q)= <7 { Brllesgg(Q) + BrlBszsgé(Q) + BrlBsssgn (@) + BrlBs4Sgﬁ (@) + BrZleség (@) +

r S

B12Bs,S:: Q)+ B,BsS;, Q)+ B2BS:; () +B3By S, () +B 3By, -Sng(Q) +B3BS,, (Q) +
B13Bss-Spy () + B4BgiSy () + Br4Bszshg(Q) +BpyB3Siy () + ByByySy () +

A A,
2 27172 Zy\a Cy,Zy\a
BoBis CEp" U (H)SU(@ | [ (1)@ —2)(2) vy, ()0ALIA, +

AL A;
BsBys CPp" U (H)SU(@) | [ (1) (22)"(2; = ru,u, (Q)0AL0A, +
AL A,
BoByo CLp" UP(H)SU@ | [ (1) (21-)(2) (2~ v, (AR, (53)

These double integrals can be described as Aerodynamic Amplification Functions
(Transformation Functions) are
AL A,

Xu@)f = [ [ Gy, (@dAdA, ,
x <Q>|2:Af Af@)“(Z—Z)“(z )10, (DdA,dA
12 H H 275 Yu,u, \32).041.04;

A A
Xa@F = [ [ )@ -G 1u,u, (Q)dA, dA,

} (54)

X2 = | [ (D@ -2)E2) @ ~ru,u, (Q0A dA,

11
So.0.(Q)=—5— { BuByS::(Q)+ B11BS,; () + B BgSe, () + B11ByS, (Q) +

I’wS

Brzlesgg(Q) +BpBgS: Q)+ B12BsS;, Q)+ B2BsaS;; () +B3Bg1 .5, () + B 3By, -Sng(Q) +
B13Bs3Syn () + Bi3Byy 5,5, (Q) + By By Sy () + BBs,S;: () + BBg3S; () + By ByuSy () +

= 2 2 2 2
Cf p2.U%(H).Sy(Q) [BisBs -|X11(Q)| +BsBss -|X12 (Q)| +BBss -|X21(Q)| +BsBss -|X22 (Q)| 1

Auto power spectral density function of the excitation with respect to the first general
coordinates
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11
Sqq, (@)= P { By B11Se: () + B11B1oSy; (€) + By By3Se () + By BySey () + B1o B Sy, () + B1aBip Sy (Q) +
1 O

B12B13S;, () + B15B14S; (Q) + B13Bi1 .S, (Q) + By3Byy S () + By3BysS,y, () +
B13B14-S1(Q) + B4B11S;:: (Q) + Byy Blzsﬁg (Q) + By14By5S;,, (Q) + B14B14S;;, () +

Ctp2 UA(H).Sy (Q)[BysBys -‘XM(Q)‘Z + 815816")(12(9)‘2 + B16515-‘X21(Q)‘2 + 816816")(22 (Q)‘z]
(55)

45 Complex transformation matrix with respect to general coordinates
Fourier transformation of the vibration response and excitation has the following form

0, (Q).[Q° +i2D,0,Q + 02 ]=02.Q, (Q)

1

Where q,(Q)=H,(Q).Q,(Q) withH,(Q)= 5 g " =1,2,...6
[1-(—5)%1+i[2D,(—)]
®n ®n
(56)
and its absolute value is AHF(Q) = 5 ! 5 , n=1,2,..6
[1- (UT)Z]Z +[2 Dn(UT)]2

4.6 Response power spectral density function with respect to general coordinates

Cross correlation functions of the response with respect to general coordinates have the form

T/2 0
.1 1 . i
Raq, (1)=Jim = Tj/jr«)qs(tﬂ)dt:z [HHQH (@S , (@™ d2 (57)

The response power spectral density function with respect to general coordinates is
2
Cross: Sy q (Q)=F{R, 4 (1} and Auto: S, (Q)=|H,(Q)".Sg, (?)
Auto power spectral density function for n-eigen form with respect to general coordinates is

2 1
Sq"q" ()= ‘Hn (Q)‘ . ? { Bn1Bn1S;; () + BnanZSgg () + Bnan3S§n Q)+ Bnan4S§ﬁ () + anBnlsgg Q)+
n

B12BnaS:: (Q) + BaBisSe, () + BipBaS; (Q) + BaBiy S, (Q) + BaBip S, () +
BsBngSin () + BgBpg Sy () + By ByaSy () + Bn4BnZShé (Q) +BpyBpsS;, () + ByBpsS;4 () +
C7p? U%(H).Sy(Q)[BsBys -‘XM(Q)‘Z + anBne-‘Xlz(Q)‘z + Bnean-‘xn(Q)‘z + BneBne-‘xzz(Q)‘z] }

(58)
Where the mechanical amplification functions (Transformation Functions) are
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|Hn(Q)|2= 1 , n=1,2,...6

[1- ()2 vip2D, ()2
o o

(59)
and the Aerodynamic Amplification Functions (Transformation Functions) are shown in Egs.
54
4.7 Response power spectral density function with respect to original coordinates

Cross correlation functions of the response with respect to original coordinates have the form

T/2 T/I2 ¢ 6
Ry x, (1)_||m— jx () X (t+ 1) dt fnm— j 3D ritga )t + 7t
—T 2 -T/2i=1 j=1
6 6 T/2
=D D it i j a,(t) g, <t+r)dt—z anm aq, (0 (60)
i=1 j=1 —T 2 i=1 j=1

The response power spectral density function with respect to original coordinates is

6 6
Cross : Sy x (@) =F{Ry,x, (=) Y 1nixXsSqq, () and Auto:
il L
6 6
Sx, (=D D nitn S, () (61)
]
6

Sxx, (@)=Y an.xm\H @f. { BriBriSz: () + BiBroS.: (Q) + BiBaSe, () + ByiBraSe; (Q)+
i=1  j=

Bn2BniS: (Q) + BpaBaS;: () + anansgn () + BraBraS; () + BngBiy Sy (Q) + BgBrp S, (Q) +

BsBngSin () + BgBpg Sy () + By ByaSy () + Bn4BnZSh§ (Q) +BpyBpsS;, () + ByBpsS; () +

— 2 2 2 2
Cip?.U(H)Sy(Q) [anan-‘xn(Q)‘ +BnSBn6"X12(Q)‘ +BneBn5-‘X21(Q)‘ +BnGBn6"X22(Q)‘ ] }
(62)
4.8 Mean square value response with respect to original coordinates

Mean square value of the random vibration response with respect to original coordinates can
be written as

1 0
vk, =Rxx, (0=5= [sx, (@0 (63)
T -0

5 Conclusions

This paper outlines a mathematical model describing the vibrations of high-tower buildings
and its foundations with general-type equivalent passive springs and dampers, rigid bodies,
and some ideal constraints under the effect of randomly fluctuating wind loads and the
excitation of earthquake ground motions. Two derivation methods of the equivalent system’s
differential equations have been considered, namely D’alembert’s principle and Lagrange’s
method, which verified the acceptability of the developed equations of motion. Following
conclusions can be withdrawn:
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e The mathematical model with 6 degrees of freedom presented in the present paper can be
used to investigate the effect of both wind and earthquakes loading.

e Analytical solution of the free vibrations of tall building and its foundation using the
general modal analysis method has been performed.

e Analytical solution of forced vibrations of tall building and its foundation has been
developed, through the correlation function (time domain) and the power spectral density
function (frequency domain) of system response with respect to general and also original
coordinates.

e Without wind and earthquakes, structures — particularly large ones — would probably be a
lot easier to design and cheaper.

e Random vibrations of building’s foundation subjected to seismic excitations of earthquake
ground motions and also randomly fluctuating wind pressure fields acting on a building
surface are analyzed.
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Appendix
Mg =pg.VE , Foundation weight =W =mg.g, Lorenz, H. (1955) calculated the weight of the
accompanied vibrating soil with the foundation using the equation

W = f.A®® ~[0.835].[a.b]“’? ton, mg=Ws/g kg.

My=Me+mg, Iy =g+ met2 +Jg+ mg 2, I =Ms o =Ms d*h__[ms/me][(d+h)/2]
me meg 2 [1+(mg/mg)]
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Foundation
Center of gravity\ | *

Accompanied vibrating soil
Fig. 4 Foundation with its accompanied vibrating toned sand

Ws | I =[(d+h)/2=1c], Jp =mg.[(d? +€2)/12], Js = mg.[(h? +€?)/12]

h:
A

F-'s
Vertical embedding damping constant: the damping constant of radiation is r, = E,/ Vg

Mass of the high tower: the density of high tower can be assumed as 1/10 of that of the foundation, i.e.
p2=p1/10

My =pp Vo , Wy =myg, J, =m,.[(b? +¢?)/12]



