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NONLINEAR FINITE ELEMENT STUDY OF SHEAR WALL—FLOOR
SLAB CONNECTIONS

Md. Shafiul Baril

ABSTRACT : This }Japer presents the results of an analytical study of the
strength and stifiness of shear wall-floor slab connections using a
specially developed three dimensional nonlinear finite element
program. The xétzfram incorporated 20 node isoparametric brick
element with em% ded steel. Concrete was modelled after the equations
given by Kotsovos and steel as an elastic perfectly plastic material. The
accuracy of theoretical predations was tested against results of
experimental work on reinforced concrete models. A total of fifteen
srecimens were tested to study the effect of shear reinforcement in the
slab and various load and geometrical parameters that govern the
strength of the connections. The theoretical strains, deflections and
failure loads were compared with the experimental values. Excellent
agreement was obtained between the two values.
KEYWORDS : Shear wall, slab, stiffness, shear stress, modelling, crack,

shear retention factor

INTRODUCTION

A common type of structure suitable for hotels and apartment
buildings is shear wall structure. The shear walls generally run
perpendicular to the length of the building and are often intersected by
facade and corridor walls. Where these intersect the cross walls, they act
as flanges to the cross walls. The floor slabs and shear walls together act
as a rigid jointed frame in resisting gravity loads and lateral forces due to
wind and earthquake. Along the line of contraflexure in the floor slabs,
lateral loads cause vertical shears which like the gravity loads are also
finally transmitted to the walls via the floor slab. The junction between
the wall and slab is therefore a key force resisting element which is
subjected to severe stress concentration. This problem has already been
studied theoretically by Coull and Wong (1983) to determine the
distribution of shear stresses at the junction. Schwaighofer and Collins
(1977) reported one adhoc test on a pair of one-third scale reinforced
concrete shear walls coupled by a slab. In a recent study, experimental as
well as theoretical work have been reported on slab-wall junctions for
planar and flanged shear walls by Bhatt et el (1986). The object of the
present investigation is to use nonlinear finite element analysis to
predict the strength and stiffness of junctions.

DETAILS OF FINITE ELEMENT PROGRAM

Element Used : The theoretical analysis was carried out using a specially
written 3-D nonlinear finite element program. The element used was a 20
node isoparametric brick element. This element was chosen to consider
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the effect of the stress components 0y, 0y, 6 Ty » T, Tz, and in particular
the vertical shear stress components t,, and for 1, which are vital for
predicting punching failure of slab-wall junction.

Simulation of Steel Reinforcement : The stiffness of reinforcing bars in
the element was included by extending into three dimensions the basic
ideas of using the embedded approach given by phillips et al (1976) for
two dimensional problems. In this approach, full bond is assumed
between concrete and steel reinforcement. This enables the strain in the
reinforcement to be calculated in terms of the corresponding strain in
the element and hence the corresponding stiffness of the steel
reinforcement. One advantage of this approach is that the reinforcing
steel can be in its exact position without imposing any restrictions on
finite element mesh choice. But the bars are restricted to lie along the
local coordinate lines of the isoparametric element used in this work.

Concrete Modelling : Concrete was modelled after Kotsovos et al (1979).
In this approach, the failure surface is expressed in terms of three
parameters, ¢, r and 6 where

q=V3 GoeerT= V3 0. CosO= {01+ 62 -2 03/ ( V61

O oct, T, =octahedral normal and shear stresses respectively, the
variable 8 = defines the direction of the deviatoric component of the
stresses on the octahedral plane. The failure envelope on the = plane is
expressed iIn terms of a curve with six fold symmetry. The curve is a
function of cos 8 and 1, and 1g which are respectively octahedral shear

stressesat 8= O°and 6 =60°. t,and 14 are given by

/f o = 0.944 CO.724 10/ "c = 0.633 CO857.
C= O /f.+0.05.
f ". = cylinder compressive strength of concrete.

Similarly, for the deformational properties, use has been made of the
secant bulk (k;} and secant shear (Gg) moduli which are expressed as
follows

K= Ot/3€0ct» Gs= Toct /2V ot

Extensive tests have confirmed that the model is applicable to concretes
with uniaxial cylinder compressive strength varying from 15 to 60
N/mm?2: All these empirical expressions for deformational as well as
strength properties of concrete were successfully implemented in the
computer program and subsequently used in the present work.

Modelling of Cracking : Smeared crack approach was adopted. Cracking
was monitored at 27 Gauss points in the element. After concrete cracks, it
no longer remains isotropic and anisotropic yield conditions prevail.
After the first crack, concrete yielding is governed by laws similar to
Kupfer et al (1973) depending on the biaxial state of stress prevailing in
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the plane of the crack. Concrete is assumed to fail in crushing mode in
compression either due to violating the failure surfae presented above or
due to reaching the principal compressive strain of 0.0035. Similarly
concrete cracks if the maximum tensile principal stress is equal to 50%
of the cylinder split strength. The main features of the cracking model
adopted are i) cracking in one, two or three directions is allowed, if)
cracks are allowed to open or close during the load increment, iii) no
tension stiffening but shear retention is allowed and iv) variable crack
direction is allowed. For incorporating a realistic shear retention factor,
B. to model shear transfer across cracked concrete, the following
nonlinear relationship based on the average of the three principal
strains at any cracked point is used
=10 f ep< €p
B=025 €/ €m f e 2 €y
where €, = fictitious mean principal strain

€o = cracking strain = 0°0001.
Method of Solution : An incremental -iterative approach was adopted.
The stiffness matrix is evaluated using secant rigidity matrix. The
stiffness matrices are updated only at the second iteration in each
increment except for the first increment. Equilibrium is checked against
the residual forces given by the difference between the total applied load
on the structure and the nodal forces calculated using the stress in the
elements. lteration stops when the ratio of the square root of the sum of
the squares of the residual forces to the applied forces is less than a
specified tolerance. In the present work this ratio was taken as 10%. The
maximum number of iterations was fixed at 20. Adopting a more
accurate tolerance did not show much difference in the behaviour other
than increasing the computation cost. The analysis was terminated by
monitoring the growth of iterative displacements. This was coupled with
a search through the diagonal terms of the stiffness matrix to detect zero
or negative values, in which case the analysis was terminated.

EXPERIMENTAL WORK

The experiments were done on reinforced concrete models designed
to represent the local stress state at the junction. Since the problem of the
strength of a shear wall-floor slab junction under investigation was one
of local stress concentration, no attempt was made to use scale models to
correspond- to any prototype. The main considerations were reasonable
representation of the stress state in the actual structure, economy in the
use of materials and ease of handling and loading, according to the
capacity of the available equipment. The floor slabs were approximately
one meter square and 150 mm thick. The slab was cast monolithic with a
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short height of the wall. The wall was held down to the laboratory floor
by two prestressing strands which passed through two holes in the wall.
Using two stiff beams, the gravity load was applied as two line loads
parallel to the wall web and acting at the edges to the slab. The shear force
due to wind load was applied as another line load normal to the wall web
and at the edge of the model. Fig 1(a) shows a typical model with loading
beams and Fig 1(b) shows the loading and supporting arrangement for
models under test. The models were monitored for ultimate load, mode of
failure, crack development and tensile stress in the reinforcement. Table
1 shows the main dimensions of the models tested and details can be

found in Reference 1.
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Table 1. Dimensions of models in millimeters

Model [ Wall |Wall |[Wall [Slab |Slab |V, Vineo | Varp
No. Web flange } thick | canti | thick | KN KN Viheo
ness lever | ness
PS1 900 125 125 450 150 219 200 1.10
PS2 900 125 125 450 150 150 180 0.89
PS3 900 125 125 450 150 175 180 0.97
MS4 | 400 125 125 475 150 191 220 0.87
MS5 | 400 125 125 505 150 208 200 1.02
MS6 | 600 125 125 35% | 150 343 330 1.04
MS7 | 600 125 125 475 150 262 260 1.00
MS8 | 600 125 125 475 150 280 280 1.00
MS9__ ] 600 125 125 475 150 247 250 0.99
MS10 | 700 300 100 300 100 200 220 0.95
MS11 | 700 200 100 300 100 219 300 1.00

MS12 | 700 400 100 300 100 235 230 1.02

Note : All the slabs had a width of 1000 mm except model MS9 which had
a width of 1440 mm.

THEORETICAL ANALYSIS

The analysis was carried out assuming zero wall thickness and eight
slab elements as shown in Fig 2. Preliminary analysis had shown that
inclusion of wall thickness made little difference to the final result, Fig
3. Similarly the value of shear retention factor § was varied and the ‘best’
correlation was obtained for the relationship given before, Fig 4. During
experiment, loading was essentially displacement controlled. Especially
at the initial stages, the wind shear applied using a stiff beam was such
that the edged of the slab had constant displacement. However the
nonlinear program could follow only force control. The procedure
adopted in the numerical analysis was as follows. In the elastic state, the
slab was subjected to a constant edge displacement. From this analysis
not only the total wind shear was calculated but also the distribution of
nodal forces due to wind shear. It was assumed that the distribution
remained constant during the entire load history. Similarly gravity and
lateral loads were not applied proportionately in the tests, whereas
proportional loading was used in the theoretical analysis. Additional
analysis indicated that the errors are unlikely to be of any significance.

Fig 2. Finite Element Mesh with Boundary Conitions
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Fig 3.(a) Effect of Wall Thickness on Lateral Load Displacement
Relations of Model ‘MS7’; (b} Effect of Wall Thickness on Tensile
Strain in Steel in Windword Direction in the Slob of Model ‘MS7’
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Fig 4.(a) Sheor Relation Factor, Bata, on the Tenslle Strain in Steel in
Transverse Direction in the Slab of Model ‘MS7"; (b} Effect of Sheor
Relation Factor, Beta, on the Tensile Strain in Closed Vertical

* Stirups in the Slab of Model 'MS7’

THEORETICAL RESULTS

To build confidence in the accuracy of the results obtained from the
finite element program, the distribution of vertical sheéar stress t,, over
the depth of slab at different loading stages is presented in Fig 5. The
figure shows approximate parabolic distribution of shear stress which
was as expected. To illustrate progressive redistribution of shear stresses
around the connection, contours of t,, and 1y, are shown in Fig 6 at
different loading stages. The area around the wall nose is found to be
highly stressed, which is the critical area for punching failure. For all
the models tested, the theoretical ultimate load (Vo) is compared with
experimental ultimate load (Veyp) in Table 1. Figure 7 shows the
comparison between the theoretical and experimental values of
displacements and strains in steel and concrete.
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4
28 PREE SR U St N W SN TN W U VY W U S Q
373 \,_J L> ('\o \/‘OK -
328 LL B
279 -
2251 , k \f\___ i
[R4-B -

+28 2 o 9
.78 / 7 -
25 o WALL U -

-00 | AN SHNE SUNEY SNNND SENNy SN SHERS SNNEY NN SUNNE SRS SN SISy SRS SENLY IS Se Sata | ~X

-0 1-0 20 30 4-0 3-0 60 T-0 80 9-0 10:0

2
X Axis 210 7~ axis nermal te the paper
Y AXtS 10 .

Fig 6.(a) Contour lines of Shear Stress Tzx (N/mm?2) in the Slab Model
MS7 Using fixed Crack Analysts at a Lateral Load 1.04 of Design

CONCLUDING REMARKS

The theoretical analysis shows that the adopted modelling is
eminently satisfactory in terms of predicting ultimate loads to an
acceptable level of accuracy. It is interesting to note thaf not ostly the
flexural type of failure was successfully predicted, but glso the punching
type. The mean and standard deviation for the resulls of ultimate load
ratio (Vexp/Vineo) Was 0.99 and 0.06 respectively. The analysis was able to
predict correct values of the loads and strains irrespective of the mode of
fatlure. The results for strains and displacements also show acceptable
agreement between measurement and theory.
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Fig 6. (b) Contour Lines of Shear Stress Tyz (N/mm?) in the Slab Model

Fg7.

MS7 Using flexed Crack Analysis at a Lateral Load 1.04 Design
Load
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Lateral Load Displacement Curves for Models of Preliminary Series to
Study the Effects of (@) Shear Steel; and (b} Wall Web Length; Tensile Strain
in Steel in; (c) Windward Direction Along Transverse Section in the Slab
of Model MS7; and (d} in Transverse Direction in the Slab Model MS8; (e)
Strain in Closed Vertical Stirup of Different Locations in the Slab of
models MS8; {f) Compressive Strain in Concrete in Windward direction in
the Slab of Model MS7
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