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PREDICTION OF LOAD - DEFORMATION BEHAVIOR AND LOAD
CARRYING CAPACITY OF PILES IN SAND

Abdul Muqtadir! and Jahangir Morshed?

ABSTRACT : A nonlinear incremental finite element procedure is
developed for the analysis of axially loaded piles in sand. In this
procedure, the pile shaft is idealized using beam column elements and
the soil is modelled as a series of unconnected nonlinear springs. Initial
spring stiffness of the frictional and tip resistance are modelled using t-z
and p-z subgrade reaction respectively; the t-z concept was proposed by
Kraft et. al., and p-z concept was proposed by Randloph and Worth. The
non linearity of spring stiffness are captured using the Ramberg-Osgood
model. The procedure thus developed is applied in predicting load-
deformation behavior, failure loads and axial load distribution of the
piles. Finally, the predicted values are compared with the model test
results.

KEY WORDS : Nonlinear analysis, failure loads, t-z and p-z concepts,
model test, displacement and non-displacement piles.

INTRODUCTION

Prediction of load-deformation response of piles is difficult. The pile
load test is considered to be one of the most reliable methods for
predicting the load-deformation response. However, this test is both
time-consuming and expensive. Alternatively, it is more advantageous to
develop simple analytical methods based on limited test results. In this
study, a simple analytical method for predicting the nonlinear load-
deformation response of an axially loaded pile in sand is presented. The.
method is based on one-dimensional finite element idealization of pile-
soil system. The soil is idealized as a series of independent springs
(Winkler 1867). The nonlinear behavior of soil is simulated using the
Ramberg-Osgood model (Desai and Wu 1976). The method includes an
empirical procedure to determine the parameters of the Ramberg-Osgood
model. In the empirical procedure, the shear resistance along the pile
length is modeled using the t-z concept of Kraft et al. (1981}, and the tip
resistance at the pile base is modeled using the p-z concept of Randloph

1 Department of Civil Engineering, BUET, Dhaka-1000, Bangladesh
2 Department of Civil Engineering, University of Utah, Logan, USA

15



and Wroth (1978). The validity of the present method is checked with
model test results.

DETAILS OF MODEL PILE TESTS
Characterization of Sand

A loose to medium dense sand was used for the model test (Siddique
1988 and Mugqtadir et. al 1990). The sand was uniformly graded with a
uniformity coefficient (Cy) of 1.15. It had an effective grain size diameter

{Dgo) of 0.013 cm. The sand had a specific gravity of 2.65 and an internal
friction angle of 31°.

DESCRIPTION OF PILES

Three model piles were tested. The piles were made of hollow
aluminum tubes closed at both ends. Each pile was 40.6 cm long of which
38.1 cm was embedded. The piles had varying diameters of 1.91, 3.02, and
5.08 cm and thickness of 0.10, 0.26 and 0.22 cm respectively.

DENSITY OF SAND BED

The model pile tests were performed in sand beds prepared in a steel
tank measuring 61 cm x 61 cm x 61 cm. A loose sand bed and a dense sand
bed were prepared. The density of the loose sand was 1.43 Mg/ m3 and that
of the dense sand was 1.68 Mg/ m3. The loose sand bed was prepared by
discharging the sand through a hopper maintained at a fall height of 10.2
cm, and the dense sand bed was prepared by compacting the sand in
layers.

PILE PLACEMENT AND LOADING

The model piles were placed under two different installation
conditions. Under one condition, the piles were first placed in the steel
tank which was then filled with sand. These were called non-
displacement (or non-driven) piles. In another condition, the piles were
driven after the sand was placed in the tank. These were called
displacement (or driven) piles.

The model pile tests were done according to ASTM F1143-74. The
piles were loaded through a proving ring and a gear box connected to a
handle. A penetration rate of 0.08 to 0.25 cm/min was maintained during
loading. The loading was continued till failure. Here, the failure load was
identified as the load at which a small load increment caused a
substantial pile head displacement.

TESTS USED IN THE ANALYSIS

In this study, model pile tests performed in the loose sand bed only
are used. The loose sand bed had a density of 1.43 Mg/m3. Test results of
both displacement and non-displacement piles are considered.
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FINITE ELEMENT METHOD

The finite element procedure involves discretization of the pile using
one-dimensional two-noded line elements. At each node, the line
element has one degree of freedom corresponding to axial displacement.
The resulting finite element equations are expressed as,

(K¢l {Aq} = {AQ} (1
where, [Kt] = tangent stiffness matrix, {Aq} = incremental nodal
displacement vector, and {AQ} = incremental nodal load vector.

In this study, the behavior of the pile material is assumed to be
linearly elastic while that of the soil is assumed to be non linearly
elastic. Thus, any non linearity introduced in the stiffness matrix is
entirely due to the nonlinear responses of the soil springs modelled using
the t-z and p-z concepts.

INCREMENTAL METHOD

A nonlinear incremental technique is used for the analysis of
axially loaded piles. In this technique, the total load is divided into a
number of increments and applied increment by increment. The stiffness
matrix [ Ki ] is updated at the end of each increment and used for the
succeeding increment. For linear elastic analysis, the total load in
applied in one increment.

DEVELOPMENT OF NONLINEAR SPRINGS

The proposed procedure involves finding of the t-z curves at different
depths along the pile length and the p-z curve at the pile tip. The t-z curves
are used to represent shear resistances, and the p-z curve is used to
represent tip resistance.

t-z Curves

Kraft et. al. (1981) gave the detail description of the t-z curves. Here,
only the salient features of these curves are described. The t-z (or shear-
displacement) relation is described by a theoretical model based on the
theory of elasticity. This theoretical model expresses pile displacement
as function of the geometrical properties of pile and soil as,

try. Tm/To
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where zg = displacement of shaft element; t=shear resistance at pile-
soil interface; ro=pile radius; rp = influence radius beyond which soil
shear stress is zero=2.5Lp (1- vg); L=pile length; p=ratio of soil shear
moduli at depths L/2 and L; vg=Poison's ratio of soil; y=t Rf/tmax: Rf =
stress strain curve fitting constant for soil and this constant is defined as
the ratio ultimate stress to the failure stress; tygax=soil shear stress at
failure; Gj=initial shear modulus of soil=E;/2(1+ vg); Ej=initial Young's
modulus of soil. Ej is assumed to be a hyperbolic function of confining
pressure (Janbu 1963) as,
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where pa =atmospheric pressure; oy=effective overburden pressure; K
and n=hyperbolic constants. Here, tmax is assumed to be the limiting
value of t at failure as,

where Kp=lateral earth pressure coefficient; d=frictional angle of pile-
soil interface. Having determined the parameters in Eq. 3 and 4, the t-z
curve at any depth can be determined using Eq. 2. The t-z curve may then
be used to predict the shear (f) for any pile displacement (zg).

The t-z relation (Eq. 2) is used to calculate the initial stiffness of
friction spring. The initial stiffness of t-z spring (kqs) at any depth is
taken as the initial slope of the t-z curve at that depth. Thus.

d

kes= 7| o ©
p-z Curve

Randolph and Wroth (1978) gave the load-displacement (p-z) relation
at pile tip as,

(1-vgm

L=t rom 6

where zt = tip displacement; p{=tip load (per unit area); n=influence
factor. Now the linear elastic stiffness of tip spring (Kp) may be expressed
as,

Pt DEj
kb—zt_ (1-VS ] (7)

where D=pile diameter. The appropriate value of n=1 was reported by
Randolph and Wroth (1978) for long pile. However, in this study, this
value did not provide good correlation with the observed behavior. It was
found that m=1 significantly under-estimates the failure pile load and
poorly predicts the load-deformation behavior. Hence, the initial
stifiness of p-z spring (Kot) is assumed as,

kot = Akp . ®
where A= constant. Armaleh and Desai (1987) suggested A = 2.6 from
pile load test results. In this study, this value of L is adopted.

RAMBERG-OSGOOD MODEL

The proposed procedure utilized this model to simulate the nonlinear
behavior of t-z and p-z springs. For the t-z spring, the model in the
hyperbolic form may be expressed as,

(kosk fs) Zs
t= m—————+k 9)
tkos-k fs) zs TR ©
L+| Pfs |
where kfs =- final stiffness of t - z spring; pfs = shear load at failure. In

this study, kfs = 0 and pfs = tmax (Eq. 4) are assumed. Figure 1 shows a
schematic of the model used in this study.
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For the p-z spring, the model in the hyperbolic form may be
expressed as,

(ot-k ft) zt
= ——— Z 10
3] (Kot-k 1) z¢ ket zt (10)
L+ —p
where kot = initial tip resistance; kft = final stiffness of p-z spring; pft =

tip load at failure. In this study, kft is taken as zero. For sand, pft is
assumed as,

where g = effective overburden pressure at the tip; Nq = bearing

capacity factor. A schematic of p - z curve is similar to that of the t - z
curve shown in Fig. 1.

I

os

Fig 1. A schematic of t-z Curve

PILE AND SOIL PROPERTIES

For the analysis herein, the aluminum pile is assumed to be linearly
elastic, and the sand is assumed to be non linearly elastic. Details of the
parameters for pile and soil are given below:
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Young's modulus of pile, Ep =55.2 GPa

Unit weight of sand, y =1.43 Mg/m3
Poison's ratio of sand, Vs =0.30
International friction angle of sand, ¢ = 31°
Hyperbolic constant, K =120
Hyperbolic constant, n =1.03

The hyperbolic constants (K and n) are determined from triaxial tests
performed at four different confining pressures of 380, 520, 690 and 1450
kPa (Morshed 1991). The earth pressure coefficient (Kp) and the bearing
capacity factor (Nq) are estimated using the experimental results of
Siddique (1988) for the 3.02 cm diameter pile. The results of the pile
under both displacement and non-displacement conditions are used to
get a set of Kh and Ng values for each installation condition. The
following conventional equations for the total shaft load (Qg), total tip
load (Q¢) and and total pile load (Q) are used.

Q= 5 YLKp tan 84 a2)
Q=1L NgA¢ a3)
9=0s+0t (14)

where Ag = surface area of shaft; At= cross-sectional area of tip. In
these equations, the effect of sand arching is neglected. Also, 8 = ¢ is
assumed due to the absence of sufficient test data. For the 3.02 cm pile,
Siddique (1998) reported Q = 267 N, Qt = 127 N for the displacement pile
and Q = 200 N, Q¢ = 111 N for the non-displacement pile. Thus using Eqs.
12, 13 and 14, it has been calculated that Kp = 2.45 and Nq = 34 for
displacement piles and Kh= 1.45 and Nq = 29 for non-displacement piles.

In Table 1, the above Kp values obtained using the conventional

equations are compared with those suggested by Sowers and Sowers
(1970). To use the vaiues of Sowers and Sowers (1970), the relative density
of soil (Dy) is needed. As Dy is not reported by Siddique (1988), the
following equation (Meyerhof 1959) is used to determine Dr.

¢ =28° + 15° Dy (15)
Thus, for the sand used in this study having ¢ = 31°, the Dy is 20%.

With this value of Dy, the K}, values are estimated by linear interpolation
between Dy = 0% and Dy = 50%.




Table 1. Comparison of Ky, values

Installation Kp values
condition
Calculat ed! Estimated? Sowers>
Dy = 20% Dy <50%
Displacement 2.45 2.45 2.00-3.00
Non-displacement 1.45 1.30 0.75-1.50

1. Using experimental results of Siddique (1988).
2. Using Sowers and Sowers (1970).
3. Taken from Sowers and Sowers (1970).

In Table 2, the Ng values calculated from experimental data using the
conventional equations are compared with those suggested by Vesic
(1967). 1t is noted that the Vesic's values do not consider installation
condition. Hence, the value is same for both the installation conditions
and appears to be the average of the Ng values for displacement and non-
displacement conditions obtained by the conventional equations.

Table 2. Comparison of Ngq values

Installation Ng values
condition
Calculated Vesic {1967)
0=31°
Displacement %! 32
Non-displacement 29 32

The parameters for t - z curves are evaluated at each nodal point
along the pile and those for p - z curve are evaluated at the pile tip.
Typical values for 3.02 cm diameter pile are given in Tables 3 and 4.

Table 3. t - z Parameters for D = 3.02 cm Pile

Soil Depth cm Displacement Non-displacement
Kes Pgs Kes Ps

N/cmS N/cm? N/cmS N/cm?2

0.00 0.00 0.00 0.00 0.00
2.54 0.76 0.05 0.44 0.03
5.08 1.52 0.10 0.90 0.06
7.62 2.34 0.16 1.36 0.09
10.16 3.27 0.21 1.82 0.12
12.70 4.08 0.26 231 0.15
15.24 4.90 0.31 2.72 0.19
17.78 5.71 0.37 3.27 021
20.32 6.53 0.42 3.81 0.25
22.86 7.35 047 4.08 0.28
25.40 8.16 0.53 463 0.31
27.94 8.98 0.57 5.17 0.34
3048 9.80 0.63 571 0.37
33.02 10.61 0.68 6.26 040
35.56 11.43 0.76 6.53 0.44
38.10 12.24 0.76 7.07 0.46




Table 4. p-z Parameters for D = 3.02 cm Pile

Soil Depth Displacement Nondisplacement
cm
Kot Pit Kot pft
N /cm3 N/ cm?2 N/ cm3 N/ cm?2
38.10 176.87 17.97 103.40 15.21

SELECTION OF FINITE ELEMENT MESH AND LOADING INCREMENT

A parametric study is performed to select an appropriate finite
element mesh ad a suitable loading increment (Morshed 1991). The 3.02
cm diameter displacement pile is discretized using 4, 10 and 16 equally
spaced nodes. It is observed that satisfactory results may be obtained
with 16 nodes. In order to select a suitable load increment for the
nonlinear analysis, the pile is discretized using 16 nodes and analyzed
using load increments of 22.25, 8.90 and 2.23 N. It is observed that
satisfactory results may be obtained using a load increment of 2.23 N.
Thus, for the present nonlinear analysis, the piles are discretized into 15
element with 16 nodes and the loads are applied using a load increment
of 2.23 N.

ANALYSIS AND INTERPRETATION OF RESULTS
Load-deformation behavior

Displacement Piles : The analysis begins with the critical examination
of the 3.02 cm diameter pile. Figure 2 (a) shows three load displacement
curves at the pile head for linear elastic case, nonlinear elastic case and
experimental observations. As observed from Fig. 2 (a), the linear
analysis can predict the experimental observations only in the initial
range of loading. This is probably due to the fact that the soil behavior in
this range is essentially linear elastic. However, the prediction made by
the nonlinear analysis is found to be excellent for the entire range of
loading. Figure 2 (b) shows three curves of tip load versus head
displacement for linear analysis, nonlinear analysis and experimental
observations. Here, the nonlinear analysis is found to ompare
satisfactorily with the experimental observations.

For the 1.91 cm pile, Fig. 3 shows the load-displacement behaviors at the
head and tip obtained using linear analysis, nonlinear analysis and
laboratory test results. The figure shows that the nonlinear analysis
satisfactorily predicts the laboratory test results.



Totat Tip Load (N)

Fig 2.

For the 5.08 cm pile, Fig. 4 (a) shows that the predicated and the
observed load-displacement behaviors at the pile head are comparable.
However, Fig. 4 (b) shows that the comparison at the pile tip is not
satisfactory. Here the experimentally observed value of the tip load
appears to be significantly smaller than the predicted values. However by
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observing the tip loads of the other two piles (Figs. 2 (b) and 3 (b}, it can be
concluded that the experimental determination of the tip load for this
particular 5.08 cm pile was erroneous. As the tip load of a pile is supposed
to increase with its tip area, the tip load of 5.08 cm diameter pile should
be about 3 times that of the 3.02 cm diameter pile and 7 times that of the
1.91 cm diameter pile, but this was not observed by Siddique (1988).
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Fig 3. Load-Displacement Response of 1.91 cm Diameter Displacement
pile : (a} Pile Load versus p pile Head Displacement; (b) Tip load
versus pile Head Displacement.
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pile : (a) Pile Load versus pile Head Displacement; (b) Tip load
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Non-displacement Piles

25

: The predicted and observed load-
displacement behavior of the non-displacement piles are shown in Figs.
5, 8 and 7. From all these figures, it again appears that the linear
analysis can predict load-displacement behavior only in the Initial
range of loading. The predictions of load-deformation behaviors at the
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head and tip compare well for both the 3.02 cm and the 1.91 cm diameter
piles (Figs. 5 and 6). For the 5.08 cm diameter pile, the load-deformation
behavior at the pile head is also found to the quite satisfactory. However,
the behavior at the tip could not be compared as Siddique (1988) did not
report the required experimental observations.
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conventional procedure (Egs.

PREDICTION OF FAILURE LOADS

Failure loads for displacement and non-displacement piles predicted
by nonlinear analysis are listed in Table 5. Also, included in the table
are the failure loads observed experimentally and those calculated by

12, 13 and 14). Here, the failure load is
identified as the load asymptotic to the load-displacement curve. From

P <]




the table it appears that the predicted loads compare well with the
observed-loads.

Table 5. Prediction of Failure Loads

Installation Pile
condition diameter Failure loads (N)
(cm)
Predicted | Observed | Estimated
Displacement 1.91 156 134 142
3.02 267 267 271
5.08 587 619 619
Non-displacement 191 107 B 8B
3.02 191 191 191
5.08 401 401 454

For the 1.91 cm diameter displacement pile, the predicted failure
load over-estimates the experimental and conventional values by 16%
and 10% respectively. However, for the remaining two displacement
piles, the comparisons are found to be highly satisfactory.

For the 1.91 cm diameter non-displacement pile, the predicted
failure load over-estimates the experimental and conventional values by
15% and 9% respectively. However, for the 3.02 cm diameter pile, the
comparison is found to be excellent. For the 5.08 cm diameter pile, the
experimental and predicted failure loads compare extremely well.
However, the predicted value under-estimates the conventional value by
12%.

From the above discussion it appears that the failure loads predicted
by the proposed numerical procedure is quite satisfactory. Also, the
failure loads calculated by the conventional method of analysis compare
satisfactorily with the observed and predicted values.

COMMENTS

It is interesting to note that the best results are obtained for the 3.02
cm diameter pile. This is due to the fact that this pile has been used to
estimate the lateral earth pressure coefficient and the bearing capacity
factor in the present analysis. This also shows the applicability of the
proposed method provided the necessary parameters are properly
determined.

AXIAL LOAD DISTRIBUTION

Figures 8 and 9 show the distribution of axial load along the pile
length for various cases and for different pile load (Q) as reported by
Siddique (1988). It should be noted that these pile loads do not
necessarily correspond to the pile loads at failure. Figures 8 and 9
include results of linear analysis, nonlinear analysis and experimental
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observations. It appears that the linear and the nonlinear analysis can
satisfactorily predict the experimental axial loads. However, the
magnitude of axial load at any depth obtained using the nonlinear
analysis, appears higher than that obtained by the linear analysis. As
load increases, the soil in the upper portion of the pile is subjected to
more plastic deformation than that in the lower portion. Thus, the upper
soil yields earlier and transfers more load to the lower soil. However, no
such yielding is accounted in the linear elastic analysis. The pattern of
numerical prediction for axial load distribution in all cases found to be
parabolic in nature which contradicts with those of experimental
observations. This may be due to error in measuring axial loads. Poulos
(1979), Bhandari (1989) and Briaud, and Tucker (1989) reported parabolic
distribution of axial load along the pile length.

CONCLUSIONS

A simple nonlinear incremental finite element procedure is used to
predict the load-deformation behavior and hence, the failure load of an
axially loaded pile in sand. Material nonlinearity of soil is included in
this study.

Load-deformation behavior of three model piles of various diameters
under two different installation conditions are studied. Load-
displacement response predicted by the proposed method compares well
with the experimental observations. It thus appears thatthe t-zandp - z
concepts can be effectively used to determine the initial stiffness of soil
springs along the pile length and at its tip respectively. The simple form
of hyperbolic Ramberg-Osgood model is found suitable in capturing the
nonlinear soil response of axially loaded piles.

The present study shows that the nonlinear soil response
significantly changes the load-deformation behavior of axially loaded
piles. A linear elastic analysis provides satisfactory results only in the
initial range of loading and fails to predict the ultimate behavior. In
contrast, the nonlinear procedure yields complete load-deformation
histories of the entire pile-soil system; such histories are difficult to
predict by other procedures. As a result, the nonlinear procedure provides
an enhanced understanding of the behavior of axially loaded pile-soil
system. The failure loads predicted by the proposed procedure also
compare well with the experimentally observed values. The maximum
discrepancy between the failure loads obtained using this procedure and
those observed experimentally is of the order of 16%.
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NOTIONS
Ag = surface area of shaft
At = cross-sectional area of tip
D = pile diameter
Dy = relative density of soil
3 = frictional angle of pile-soil interface
1 = influence factor '
Ej = initial Young's modulus of soil
Ep = Young's modulus of pile
Gy = initial shear modulus of soil
Y = unit weight of soil
Kg = tangent stiffness matrix
K = hyperbolic constant
kp = linear elastic stiffness of p-z spring
kfs = final stiffness of t-z spring
kft = final stiffness of p-z spring
Knh = lateral earth pressure coefficient
kos = Initial stiffness of t-z spring
kot = initial stiffness of p-z spring
= pile length
A = constant
n = hyperbolic constant
Nq = bearing capacity factor
Vs = Poisson's ratio of soil
Pt = tip load
Pa = atmospheric pressure



shear load at failure

tip load at failure

internal friction angle of soil

effective overburden pressure of soil at tip

total pile load

total shaft load

total tip load

incremental nodal displacement vector
incremental nodal load vector

influence radius beyond which soil shear stress is zero
ratio of shear moduli of soil at depths L/2 and L
pile redius

stress-strain curve-fitting constant for soil
effective overburden pressure

shear resistance at pile-soil interface

soil shear stress at failure

displacement of shaft element

tip displacement





