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Simplified calculation method for serviceability deflection of edge
supported slabs; Part 2: Coefficient method

B Ahmed' and S R Chowdhury!

ABSTRACT: Calculation of design moments are based on coefficient method
for edge supported slab systems. The design procedure for edge supported
slabs lacks from the checking of the serviceability deflection of slabs using
simple techniques like the calculation of strip moments using coefficient. A
companion paper summarised the methods available for calculating slab
deflection, described the development and verification of a finite element
model for simulating slab response. The model so verified has been employed
in this paper for conducting parametric studies for deflection of slab centre for
various support cases and span rations. These have been consolidated into
tabular form which forms the basis for calculating the slab deflection using
coefficient method and forms a method that is consistent with the moment
coefficient method of ACI. Results obtained using the proposed method have
also been compared with Finite Element results for continuous slab systems.
Finally a comparison of slab deflection for various span ratios and support
cases have been performed with some of the available methods.

KEYWORDS: Deflection, edge supported slab, coefficient method,
strip moment, ACI method

INTRODUCTION

It has been shown in a companion paper (Ahmed and Chowdhury,
1999) that there are several methods available for the calculation of
deflection of the edge-supported slabs. It was observed that the
available methods are either very difficult to use {Lavey and Simpson
described by Ugral 1981, Chang and Hwang 1996, Polak
1996,Vanderbilt et al 1965) or oversimplifies the conditions (strip
method described by Ugral, 1981, ACI method 1995). A companion
paper described the development and verification of a FE model using
ANSYS to simulate slab response. Results obtained from the FE model
was converted into strip method of the ACI moment coefficient. This has
been used to verify the FE result with ACI results by extracting results
for various span ratios and all the nine support conditions. Results
presented in the companion paper shows that the model can represent
the behaviour of edge supported slab with sufficient accuracy. This
paper utilises the developed model, to study the deflection pattern of
such slabs under various conditions, results of which has been
consolidated to develop a simple procedure to calculate the deflection in
away similar to the moment calculation procedure.
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PARAMETRIC STUDY OF SLAB DEFLECTION

A companion paper described the development and verification of
numerical model for edge supported slabs. The verified model is used in
this section to study the deflection behaviour at the centre of the slab
considering few selected parameters.

Selection of parameters
For parametric study, the following parameters have been selected:
e Thickness of slab
Applied load
Reinforcement ratio
Support conditions
Span ratio

Thickness of slab

ACI code specifies that for edge supported two way slabs the
thickness of the slab should be the larger of: 90 mm (3.5 inch) when the
average value of ratio of flexural stiffness of beam section to flexural
stiffness of a width of slab bounded laterally by centrelines of adjacent
panels (if any) on each side of the beam (am) greater than 2.0. For (om)
between 0.2 and 2.0 the thickness should be larger than 125 mm. Thus
the lower thickness has been kept to this magnitude (90 mm) for all the
cases. The upper limit of thickness for parametric study selected is 508
mm (20 inch).

Applied load

For residential building in case of private rooms and corridors a
load of 1.916x10-3 N/mm?2 (40 psf), for residential apartments armouries
and drill rooms a load of 7.185x10-3 N/mm?2 (150 psf), corridors of
hospital above the first floor a load of 3.83x10-3 N/mm?2 (80 psf}, stack
rooms of libraries not less than a load of 7.185x10-3 N/mm?2 (150 psf)
has been specified in ANSI AS58.1-1982. From this consideration the
range of loading on the slab has been selected from 1.916x10-3 N/mm?2
to 9.58 N/mm?2 irrespective of support condition and slab thickness.
The self-weight of the slab has been considered separately from slab
thickness.

Reinforcement ratio

As per ACI code (1995) the minimum reinforcement ratio
considering temperature and shrinkage is 0.002. For parametric study
the reinforcement ratio has been varied from 0.002 to 0.05. Due to
limitation of the FE software the reinforcement ratio has been kept
same in both directions.

Support conditions
To maintain similarity with the ACI moment coefficient method the
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nine support cases as classified by ACI method have been selected for
the study.

Span ratio
Slabs span ratios of 0.5 to 1.0 have been selected.

Modelling reinforcement ratio

Shell element of ANSYS is not capable of modelling reinforcement;
i.e., reinforcement option is not incorporated, in the shell elements of
ANSYS. Solid elements in ANSYS have reinforcement option; but since
solid elements do not posses any rotational degrees of freedom; they are
not at all suitable for modelling slab response. To continue the use of
shell elements; an indirect approach for modelling reinforcement is
essential. The technique adopted to cater the reinforcement ratio is
described below:

Presence of reinforcement in the slab increases the stiffness of the
slab; thus increasing the slab stiffness by proper amount, it is possible
to simulate the presence of reinforcement. To increase the stiffness the
slab, either thickness or modulus of elasticity of the slab is to be
increased. As obtaining a proper modulus of elasticity of the reinforced
slab through purely mathematically derived expression is difficult, the
former approach has been selected. Basic concept used herein is to
compute the moment of inertia of the reinforced slab considering unit
width, then using this inertia height of the slab having unit width and
consisting of concrete is calculated. Thickness (t¢) calculated in this way
represent the slab having thickness (t) with given steel ratio. Figures
1(a) and 1(b) show the slab with reinforcement and the corresponding
equivalent slab respectively. The equations involved in this process are
shown bellow:
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Above equations have been incorporated into Microsoft EXCEL
spread sheet and the effective thickness te; is obtained from the spread
sheet by directly inputting b, te, d and As. Value of n is selected equal to
9 for analysis purpose.

Results of finite element analysis

Effect of slab thickness on deflection

Figures 2(a) and 2(b) show the relation of deflection ratio with slab
thickness for case 9 and slab span ratio 0.50 considering load and
reinforcement ratios as variables. Deflection ratio for any slab have been
computed by dividing deflection of slab centre by the deflection of slab
centre due to self weight of 90 mm slab thickness. For the other 44
cases (nine support conditions and five span ratios), similar curves are
obtained by Chowdhury (1999). It is observed from the figures that
deflection reduces sharply with increasing slab thickness and the
deflection can be represented by a function that is inversely
proportional to the cube of slab thickness. From these Figures it is
found that up to 130-mm thickness, deflection decreases sharply with
increasing slab thickness. But from slab thickness 130 mm to 230 mm,
deflection does not decrease so much with increasing slab thickness.
Beyond 230 mm thickness, deflection remains almost same with
increasing slab thickness. Thus for edge supported slabs in ordinary
residential building (up to 6000 mm span) a thickness of 130 mm would
produce quite satisfactory performance considering deflection.

Effect of applied external uniformly distributed load on slab
deflection

Figure 2(a) shows the relation of deflection ratio with slab thickness .
for case 9 and slab span ratio 0.50 for different applied load. The
behaviour is identical for other 44 cases, out of 45 (5x9) cases
{Chowdhury S R, 1999).
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Fig 2. Variation of deflection ratio (deflection/deflection due to self-
weight of 90-mm slab thickness) with thickness for case 9 and
span ratio 0.50

From this figure it is clear that for constant thickness deflection
increases with increasing applied load in the elastic region, which is a
very common criteria. Slab deflection is directly proportional to the
applied load, which is also reflected from this figure. This figure can be
utilised for quick determination of slab centre deflection of edge
supported slabs with known applied load and slab thickness.

Effect of reinforcement ratio on slab deflection

Figure 2(b) shows the relation of deflection ratio with slab thickness
for case 9 and slab span ratio 0.50 for different reinforcement ratio.
Relation between deflection ratio and thickness for varying
reinforcement ratios are same for other 44 case (Chowdhury S R, 1999).
From this figure it can be seen that for any constant thickness,
deflection ratio decreases with increasing reinforcement ratio. Like
Figure 2(a); Figure 2(b) can also be utilised for quick determination of
slab centre deflection of edge supported slabs with known remforcement
ratio and slab thickness.

Effect of support condition on slab deflection

Figures 3(a) and 3(b} show the relation of coefficient of deflection of
slab centre for short and long directions respectively with slab span
ratio for different support conditions. From these figures it can be seen
that for any constant span ratio, deflection of slab centre is maximum
for simple support (case-1} condition and minimum for all fixed (case-2}
condition. At span ratio 1.0, case-6 (DC fixed) and 7 (BC fixed) also
case-3 (AD and BC fixed) and case-5 (AB and DC fixed} have same
deflection as these slabs functionally represent the same support
condition at those span ratios. It can be seen from Figure 3(a} that
deflection coefficient of case-3 (AD, BC fixed) is higher than that of case-
6 (DC fixed) up to span ratio nearly 0.80 but after that span ratio
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deflection coefficient of case-3 (AD, BC fixed) less than that of case-6
(DC fixed). The same is observed for case-3 (AD, BC fixed) and case-4
(AD, AB, BC fixed) at span ratio 0.90. This is also true for case-8 (AD,
AB, BC fixed) and case-5 (AB, DC fixed) at span ratio 0.90. If support
condition is known slab centre deflection at any span ratio can be
obtained using these figures. Similar findings are present in Figure 3(b).

Effect of slab span ratio on deflection

Figures 3(a} and 3(b} also show the relation of coefficient of
deflection of slab centre in short and long direction respectively with
slab span ratio for different support conditions. It can be seen from
these Figure 3(a) that for case-1 (slab with simple support), case-7 (BC
fixed), case-3 (AD, BC fixed) deflection coefficient decreases sharply with

span ratio than other support conditions. Similar findings are present
in Figure 3(b}.
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Fig 3. Variation of deflection coefficient of slab centre with slab span
ratio ‘

Development of coefficient table for slab deflection
Considering the two central strips of a rectangular plate with short
span la and long span lp supporting a uniform load w. Equating the
centre deflections of the short and long strips gives:
swit swlf
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and also total load
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solving:

4
w o= w . lb . ; thus for a given slab:
“ 17+ 1
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w, = wk (4)
Where:

wa = share of load w carried in the short direction
whn = share of load w carried in the long direction

Again midpoint deflection in short direction can be expressed in the
following form: )
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In the same way midpoint deflection in long direction is:
wl;1
= Cb t—3 (Sb)

Equations 5a and Sb are developed considering simply supported
slab only while the philosophy and the final form of the equation is
same for all the cases
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Thus using equations 5(a) or 5(b) it is possible to calculate
deflection of slab having any support condition and span ratio provided
a proper coefficient is available.

Using the verified model for slab; it is possible to obtain the
deflection of slab centre for all support cases and span ratios and these
can be used to compute the deflection coefficient as follows:

When short direction is used:

C = 6FE (6a)
o WI 4

u

tJ

When long direction is used:

C =—tE (6b)

A complete set of FE analyses has been conducted and the results
of the analyses have been transformed using equations 6(a) and 6(b).
Table 1 shows the coefficients to be used in short and long direction for
different slab span ratio to calculate the immediate deflection of slab
centre uniformly distributed load. The same is also shown in Figures
3(a) and 3(b). For using these tables or figures the magnitude of load to
be used consists of self-weight of the slab and the applied load.

Verification of developed coefficient method for various realistic
conditions ‘

The coefficient table (Table 1) developed for calculating slab centre
immediate deflection may be used for span ratio other than span ratio
0.50, '0.60, 0.75, 0.90, 1.00 and for continuous of slab systems.
Following sub sections describes the verification of the proposed
coefficient tables.

For single slab with different support case

A slab with span 6.096m x 7.62m (20ft x 25ft), i.e., span ratio 0.67
has been selected for the first set of analyses. The slab has been
modelled using 10x12 elements. Table 2 shows the insignificant’
variation of result obtained using coefficient (by interpolation from Table
1 with result obtained from numerical model. Only for case 3 slight
variations is observed though it is on safer side. So from above it can be
concluded that Table 1 can be used for any slab span ratio.

Continuous slab system

Coefficient table for calculating the deflection of slab centre
contains nine cases, which simulate the support conditions either to be
fixed or simple support. But for continuous slab, coefficient of Table 1
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Table 1 Coefficient of immediate deflection of two-way edge
supported slab centre, using short or long direction

Span Ratio Case | Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9
m=1/M
(o) [ o) | oy | (o) | o) | o) | o) | o) | 10w
Ca 1.103 0.348 0.524 0.552 0.523 0.755 0.755 0.436 0.436
1.00
Ccb 1.103 0.348 0.523 0.552 0.523 0.755 0.755 0.436 0.436
Ca 1.307 0.407 0.697 0.697 0.569 0.862 0.958 0.552 0.494
0.90
Cch 0.892 0.278 0.476 0.476 . 0.389 0.589 0.654 0.377 0.337
Ca 1.8000 0.552 1.132 0.900 0.639 1.045 1.423 0.784 0.589
075
Cb 0.570 0.175 0.359 0.285 0.202 0.311 0.451 0.248 0.187
Ca 2.382 0.667 1.779 1.144 0.699 1.239 2.065 1.080 0.667
0.60
Cb 0.308 0.086 0.230 0.148 0.090 0.160 0.267 0.140 0.086
Ca 2.762 0.697 2.313 1.283 0.716 1.335 2.534 1.232 0.707
0.50
Cb 0.173 0.044 0.145 0.080 0.045 0.083 0.158 0.077 0.044

Table 2 Comparison of deflection of slab centre using coefficient
method and numerical results

Different Deflection obtained Deflection obtained Percentage of Variation
Cases from by (based on numerical
model)
numernical model using coefficients
{mm) (mm)

Case1 7.301 7.422 -1.66

Case2 2.221 2.289 -3.06

Case3 4.307 4.356 -1.14

Case4 3.738 3.820 -2.18

Case5 2.775 2.897 -4.37

Caseb 4.435 4.567 -2.98

Case7 5.639 5.669 -0.54

Case8 3.4%09 3.200 -2.94

Case9 2.493 : 2.5%4 -4.05




should be checked to verify whether it could be used for such cases. For
this purpose two types of slab with different span ratio and support
conditions are discussed herein.

(i) Three-span slab

Figure 4 shows a three-span slab. This slab has been analysed
using Finite Element method for various edge conditions (exterior
supports either rigid or simple support and span ratios (0.50, 0.67,
0.75,and 1.00). The analyses have been classified into five categories
namely cases a to e. In case a all exterior supports are fixed and span
ratio varies for all the three slabs at the same time. In case b support
condition remains the same whereas the span ratio varies for only the
middle slab BCFG. For the two exterior slabs span ratio remains
constant (0.50). Case c represents analysis of case-a with exterior
support as simple support. Similarly case d represents analysis b with
exterior supports as simple support. In all these four cases (a to d)
results have been extracted for the middle slab thus cases a and b
represent case 2, and thus cases ¢ and d represent case 3 of ACI
moment coefficient method respectively. Case e and case ¢ represent the
same FE analysis but results have been extracted for the exterior slab
which represent case 7 of ACI moment coefficient method. Table 3
summarises all the necessary data for FE model.

(ii) Two-span slab

Figure 5 shows a two-span slab. This slab has been analysed using
Finite Element method for various edge conditions (exterior supports
either rigid or simple support and span ratios (0.50, 0.67, 0.75,and
1.00). The analyses have been classified into two categories namely
cases f and g. In case f all exterior supports are fixed and span ratio
varies for slab ABEF where as span ratio remains constant (0.50) for
slab BCDE. Case g represents analyses of case f with exterior supports
as simple support. In all these cases (f and g), results have been
extracted for slab ABEF thus they represent case2 and case 7 of ACI
moment coefficient method respectively. Table 4 summarises all the
necessary data for the FE model of the two-span slab considered.

Comparison of results

Figures 6 to 12 compares the results obtained from FE analyses
with that of the proposed coefficient method of analysis for the studies
described in this section. It can be seen from these figures that the
proposed method produce quite reasonable results for various cases
that may occur in real slab systems and thus is suitable for using in
design purpose.



Table 3 bifferent cases of complete FE model for three-span slab
based on fig 4

Case Slab Support Span of individual slab (Lxk) Span Case
(defined case ratio
in {ns per
complete coefl.
FE model) ABGH BCFG CDEF method)
3.05mx6.10m 3.05mx6.10m 3.05mx6.10m 0.50
Case a BCFG Al four 3.05mx4.57m 3.05mx4.57m 3.05mx4.57m 0.67 Case 2
edges
fixed
3.05mx4.06m 3.05mx4.06m 3.05mx4.06m 0.75
3.05mx3.05m 3.05mx3.05m 3.05mx3.05m 1.00
1.52mx3.05m 3.05mx6.10m 1.52mx3.05m 0.50
1.52mx3.05m 3.05mx4.57m 1.52mx3.05m 0.67
BCFG
Case b Arlll four | 152mx3.05m | 3.05mx4.06m | 1.52mx3.05m | 0.75 | Case2
edges
fixed 1.52mx3.05m | 3.05mx3.05m 1.52mx3.05m 1.00
3.05mx6.10m 3.05mx6.10m 3.05mx6.10m 0.50
3.05mx4.57m 3.05mx4.57m 3.05mx4.57m 0.67
BCFG
Case ¢ Alil four | 3.05mx4.06m | 3.05mx4.06m | 3.05mx4.06m | 0.75 Case 3
edges
. hinge 3.05mx3.05m 3.05mx3.05m 3.05mx3.05m 1.00
1.52mx3.05m 3.05mx6.10m 1.52mx3.05m 0.50
1.52mx3.05m 3.05mx4.57m 1.52mx3.05m 0.67 Case3
BCFG
Case d Aclil four | 152mx3.05m | 3.05mx4.06m | 1.52mx3.05m | 0.75
edges
hinge 1.52mx3.05m | 3.05mx3.05m | 1.52mx3.05m | 1.00
3.05mx6.10m 3.05mx6.10m 3.05mx6.10m 0.50
Case ¢ :BGH All four | 3.05mx4.57m | 3.05mx4.57m | 3.05mx4.57m | 0.67 | Case7
T
CDEF ;?r?;: 3.05mx4.06m 3.05mx4.06m 3.05mx4.06m 0.75
3.05mx3.05m 3.05mx3.05m 3.05mx3.05m 1.00
e

Comparison with other methods

Figure 13 compares the results obtained from developed coefficient
method with that of the different 4 methods [Strip method, Simson’s
method, Levy’s method referred by A.C. Ugral 1981) and a method
described by Winter and Nilson (1986), in terms of deflection ratio.
Deflection ratio has been defined as the ratio of deflection of the slab for
any given support condition calculated using a certain method to the
deflection given by strip method for the slab having same geometry but
simple support. Figures 14 to 21 compares the result with two different
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Fig 4. Slab selected for comparing deflection from FE analyses and
coefficient method
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Fig 5. Two-span slab selected for comparing deflection from FE analyses
and coefficient method

methods |Strip method and method described by Winter and Nilson), for
the remaining eight cases. Although it appears from Figs 13, 14 and 16
that the deflection is constant using Strip method, actually the ratio as
stated is constant. °

In Figure 13 deflection ratios of slab centre have been obtained by
dividing deflection of any slab by the slab centre deflection of that slab
computed from strip method. In Figures 14 to 21 deflection ratios of
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slab centre have been obtained for different cases (cases 2 to 9) and
different span ratios, dividing deflection of slab centre obtained from
different methods by deflection of slab centre of simple support (case 1)

of respective span ratio.

It can be seen from these results that strip method overestimates
the deflection for cases 1 and 2. Also for these two cases the available
simple equations provide satisfactory results. For cases 3 to 9, presently
available methods always underestimate the slab deflection. Thus it can
be concluded that the developed method always provides better results

and is simple to use.

Table 4 Different cases of Complete FE model for two-span slab
based on fig 5
Span Case
ratio
Case Concerned Support case Span of individual alab (short x long (as per coeff.
(defined Slab span) method)
in
complete
FE model) ABEF BCDE
3.05mx6.10m 1.52mx3.05m 0.50
Case f ABEF All four Case 2
edges fixed 3.05mx4.57m 1.52mx3.05m 0.67 R
3.05mx4.06m 1.52mx3.05m 0.75
3.05mx3.05m 1.52mx3.05m 1.00
3.05mx6.10m 1.52mx3.05m 0.50
All rour_ 3.05mx6.10m 1.52mx3.05m 0.67
Caseg | ABEF edges hinge | 3 o5mxs.06m | 1.52mx3.05m_ | 075 | Case?
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Fig 19. Effect of span ratio on deflection ratio
(deflection/ deflection for strip
method  with simple  support
condition) in various methods for
case 7
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CONCLUSIONS

The finite element model described in the companion paper has
been employed to study the deflection behaviour of edge supported
slabs. Methods are described for indirect inclusion of the reinforcement
into the FE model. Equations are derived for converting the FE
moments and deflections into deflection coefficients. Parametric studies
have been conducted for understanding slab response; results of which
have been converted in to deflection coefficients. A comprehensive table
has been formulated for using in conjunction with the ACI moment
coefficient tables. To verify this table further FE investigations have
been conducted with continuous slab system having variable span
ratios. It has been observed from the comparison of results that quite
satisfactory results are obtained using the coefficient table and thus
concluded that it can be incorporated in to future design practice.
Finally results have been compared with available simple methods
which demonstrated the accuracy of the proposed method.
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