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NON-LINEAR FINITE ELEMENT ANALYSIS OF REINFORCED
CONCRETE RECTANGULAR AND SKEW SLABS

Sk. Md. Nizamud-Doulah! and Ahsanul Kabir?

ABSTRACT: Non-linear finite element method using layered concept across
the thickness has been adopted to study its suitability for the analysis of
reinforced concrete slabs with special emphasis on skew slabs. Only material
nonlinearity has been considered here. An eight-noded isoparametric Mindlin
plate element based on layering technique is used to account for transverse
shear deformations. The layered technique is adopted in order to allow for the
progressive development of cracks through the thickness at different sampling
points. The non-linear effects due to cracking and crushing of concrete and
yielding of steel reinforcement are included. The material model behaviour is
based on the experimental observation reported by various authors.
Rectangular and specially some reinforced concrete skew slabs have been
picked up as examples to demonstrate the applicability and efficiency of the

method.
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INTRODUCTION

The analysis and design of reinforced concrete skew slabs are
normally based on the linear elastic theories and limited up to yield load
only. Désayi and Prabhakara (1981) proposed a method of predicting
the load deflection behaviour beyond the yield load considering the
effect of membrane forces. Elastic and yield load theories can not be
used in case of complex structures with complicated loading and
boundary conditions. For many structures, cracking and crushing in
the concrete through the depth as well as yielding of reinforcing steel
are major sources of material nonlinearity. Cracking results in the
permanent loss of both tensile stiffness and tensile strength in a
direction normal to the crack. In case of crushing, the concrete is
simply assumed to lose its entire rigidity and strength in all directions.
There is little information in the literature on the behaviour of
reinforced concrete skew slabs loaded to failure, whereas most of the
research has been done in respect to rectangular slabs. Non-linear finite
element analyses of this type of slabs have been carried out by Johnarry
(1979), Cope and Rao {1981), El-Hafez (1986) and Kankam and Dagher
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(1995). More research is needed to establish the effective numerical
procedure for the non-linear analysis of reinforced concrete skew slabs.
This work is an attempt towards that end to correlate the experimental
behaviour of few skew and rectangular slabs with the numerical
predictions using simple and popularly accepted material models.

The application of the finite element method to the analysis of
concrete structures has been growing rapidly since Ngo and Scordelis
(1967) first introduced it. The success of analysis depends on an
appropriate modelling of the composite material behaviour. Many
material models (Chen and Ting (1980), Gupta and Akbar (1984), Hu
and Schnobrich (1990), Gopalakrishnan, Mohan Rao, and Appa Rao
(1993)} have been proposed to predict the response of concrete,
However, they include a large number of functions and material
parameters and involve tedious programming and computational effort.
An ideal choice is one that is simple and involves as few parameters as
possibie, yet can yield reasonably accurate results. From this point of
view, the model proposed by Kupfer et al. (1969) with a slight
modification is incorporated here. This model is simple and is found to
work well with Mindlin (1965)-plate formulation. This study present
numerical model based on layered Mindlin plate element formulations.
The load deflection behaviour of reinforced concrete skew slabs in
particular and some rectangular slabs have been studied. The ultimate
load carrying capacities determined numerically are compared with the
available experimental data and/or other theoretical solutions.

MINDLIN PLATE FORMULATION

An eight-noded isoparametric element using layered representation is
incorporated in this study. The displacement u, v, w at any point can be
expressed as:

U(X»ysl) Uo(x,y)—zex(x,y)
vu(x,y,z) vo(x,y)—zey(x,y) (1)
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Where uo, vo, wo are the displacements at the plate mid-surface, 6x and
v are the rotations of the normal along x and y-axes. The displacements
are interpolated as follows:
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Ni = shape function for node i expressed in terms of natural coordinates
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In the two dimensional analysis based on plane stress assumption, the
strain is related to displacement as:
Ep =E_B.pi.gi
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Bpi = strain matrix due to plane stress deformation
Bsi = strain matrix due to transverse shear deformation

The following are the incremental stress-strain relationships
Aog =Dpde,
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Dp = elasticity matrix related to in-plane stresses
Ds = elasticity matrix related to transverse shear stresses

The stiffness matrix and the load vectors are obtained from the following
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where, b = body forces

t = boundary tractions



MATERIAL MODELLING

Modelling of Concrete Behaviour

The uniaxial stress-strain curve for concrete is idealised as shown
in Fig. 1. The concrete is considered as an isotropic bilinear elastic
material in compression. The experimentally determined failure
envelope of Kupfer et al (1969) under biaxial stress condition is shown
in Fig. 2. The mathematical description of this surface given by Kupfer
and Gerstle (1973) in the biaxial principal stress space has been
included in this study without any modification for compressive state of
stress. Thus the failure surface under biaxial compression is given by:
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Fig 1. Typical and Idealised Uniaxial Behaviour of Concrete

The initial discontinuous surface under biaxial compression stress
state is obtained by approximately scaling down the assumed failure
surface to correspond the uniaxial bilinear stress-strain curve. Local
failure of local sampling peint occurs when the following crushing
criterion is fulfilled.

F(s):Jex2+ey2—exey+0A757xy2=0 (7)

When the failure surface in biaxial compression is reached the
constitutive relation is made zero. If the crushing criterion as given by




Eq. (7) is satisfied the material is assumed to lose its entire strength
and rigidity in all directions and the current stresses are set to zero.

The failure envelope of Kupfer et al (1969) has been selected for
biaxial tension-tension and tension-compression state of stresses with a
little modification. When concrete is subjected to a combined tension-
compression stress state, the failure surface is defined as:
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The failure surface for biaxial tension-tension stress state is defined as
F(O')=O’1 —ft' =0 (9)
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Fig 2. Idealised Biaxial Strength Envelope for Concrete

When the stresses in a layer equal or exceed the failure envelopes of
Eq. (8) and Eq. (9) concrete is assumed to crack normal to the offending
principal stress. Cracking of concrete is represented by many finely
spread smeared cracks and thus cracking is incorporated into the
stiffness properties of the concrete as an orthotropic material. A
smeared crack model allows the concrete to crack in one or two
directions and for the cracks to partially or fully close. The local
discontinuities due to cracking are represented in a distributed manner
by this approach. This is a major advantage of this model. The angle
between the crack and the positive x-axis is measured counter-
clockwise positive as shown in Fig. 3 and may be deduced from:

T
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After formation of the first crack, the concrete is assumed to lose its
stiffiness perpendicular to the crack direction. The crack oriented local
elasticity matrix is transformed to global co-ordinate system standard
strain transformation matrix T, as:



Co=T."CL T, (11)

where, CL = local elasticity matrix
Cac = global elasticity matrix
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where, ¢ = cos 6¢r, s = sin Ocr, and 6cr = angle with respect to x-axis.
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Fig 3. Crack Orientation w.r.t. x-axis

Concrete cracked in two directions is assumed to lose all of its
strength. The tension stiffening effect of concrete is included by allowing
concrete stress normal to the crack to gradually drop to zero over a
specified strain range as shown in Fig. 4. The tension stiffening
approach with n=15 suggested by Clark and Speirs (1978) ensures good
predictions for slabs and beams. The value assigned to 'n' was 10 and
20 in this analysis.

Modelling of Reinforcing Steel Behaviour

Reinforcing steal is assumed to be smeared into a thin layer of
thickness equivalent to its total area. The smeared layer of steal is
assumed to have unidirectional stiffness corresponding to the direction
of its physical layout as shown in Fig. 5. This model! describes a
nonlinear stress-strain relationship proposed by Richard and Abbott
(1975). The experimental stress-strain curve of reinforcing steel loaded
monotonically is shown in Fig. 6. A procedure is developed to fit a
smooth analytical expression to this experimentally obtained stress-
strain curve. The proposed equation is given by
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In which referring to Fig. 6, E1 = Es - Ep, Es = initial modulus of
elasticity. of steel, Ep = plastic modulus chosen as the slope at a
convenient point at the ultimate zone, n = shape parameter of the
stress-strain curve, and oo = a reference plastic stress.
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Fig 4. Typical Tension Stiffening Curves for Concrete

The shape parameter n may be obtained by forcing the analytical
expression Eq.12 passing through two points (ea, Ga; &b, ob) on the
stress-strain curve as shown in Fig. 6, where, for convenience g» = 2¢a.
The resulting equation is

1
n_4__' pn_
A —1—2n (B" -1 (13)
In which, A= E1/(Ea - Ep), B=E1/(Es - Ep), Ea= 04/ €a and Eb = ou/ b,

The shape parameter n is then obtained by numerical 1terat10n of
Eq.13. The parameter oo is obtained using trial values of n

E|€
gy = __—l (14)
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The expression for the tangent modulus is obtained by
differentiating Eq.12 with respect to strain as
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. The steel is oriented at an angle ¢s measured counterclockwise from
the x-axis. The local modulus matrix is transformed to the global axis
with the help of transformation matrix.
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Fig 5. Typical Layout of Reinforcing Steel
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Fig 6. Modeling Stress-Strain Relationship of Reinforcing Steel




RESULTS AND DISCUSSION

Finite element discretisation eventually results in a set of simultaneous
equations of the form
Kd =R (16)

where K = Element stiffness matrix
* d = Element displacement vector
R = Element load vector

Frontal solution technique is used here where element stiffness
assembly and its reduction go simultaneously. The solution of non-
linear problems by the finite element method is usually attempted by
one of three basic techniques - {a) Incremental methods, (b) Iterative
methods and (c) Modified Newton-Raphson's method. An effective
solution scheme for these equations involves the use of an incremental
loading procedure with subsequent equilibrium iteration. Hence, the
Modified Newton-Raphson's method in which the stiffness matrix
updated at certain interval is used here in the program to improve the
convergence rate. The analysis is carried out by loading the structure in
small load increments. For every load increment, iterations  to
equilibrium are performed to the point where the residual force comes
to an allowablé tolerance. The stiffness is updated once in each
increment at the second iteration so that the non-linear effects are
reflected more accurately in the stiffness matrix. Kabir (1986) reports
that this updating of stiffness matrix proves to be more efficient and
economical and it is found to be so in this study. For every load step the
residual load vector is calculated as the difference between the external
and the internal loads:

y=R- (B gdv (17)
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The unbalanced force is reduced to a negligibly small value
iteratively by reapplying it to the structure. Displacement-norm
convergence criterion with 0.1 % tolerance is used in this study to
achieve convergence for the unbalanced load vector resulting from an
iteration.

A small load is first applied and the maximum tensile stress
developed anywhere in the concrete due to this applied load is found
out. The load is then automatically scaled up to the numerical cracking
load Pcr to correspond the limiting tensile strength of concrete. After
cracking a load increment of APcr is applied where A was limited
between 10 % and 20 % of the cracking load. This approach was
adopted by Kabir (1986) and it is reported that this worked well with a
good number of reinforced concrete slabs.

The program should be stopped as soon as some set of collapse
criterion is met. Otherwise the instability conditions arising due to




decay of stiffness matrix would possibly break down the solution
process long before the matrix itself becomes singular. At this stage no
additional load can be sustained by the structure indicating its total
failure. The displacements due to accumulation of its increment may
rise sharply resulting in a lack of the convergence of the non-linear
solution. The maximum admissible vertical deflection criterion
indicating total collapse was used to stop the program in this study.
When the deflection at any particular increment of loading exceeded a
value equal to 75% of the slab thickness, the analysis was terminated
and the load at that point was taken as the ultimate load.

NUMERICAL EXAMPLES

The experimental results reported by some other investigators are
compared with the results obtained using this model in order to study
the effectiveness and limitations of the present non-linear model. If this
numerical model can produce an accurate prediction over a wide range
of experimental problems for the general behaviour such as deflections,
cracking loads and ultimate loads, the model can be used to predict the
behaviour of any other problems. In some cases where material
properties are not reported, they are assumed.

Jofriet and McNeice’s Slab

The corner-supported slab reported by Jofriet and McNeice (1971)
was analysed using the present non-linear model. The slab was loaded
with a single concentrated load at centre span. The overall slab
thickness was 1.75 inch with an effective depth of 1.31 inch. A quarter
of the slab was discretised from symmetry as shown in Fig. 7. The load
deflection curves are shown in Fig. 8. The respective material properties
used for the analysis are :

Ec¢ = 4150 ksi, fc = 5500 psi, f+= 550 psi, v=0.15
Es = 29000 ksi, fy = 60,000 psi, oo = 50,000 psi, n = 2.67
Px=py= 0.85 %, t = 1.751n, d = 13lin

Johnarry’s Slabs ( S590 )

The slab tested by Johnarry (1979) designated as S590 is a
rectangular slab simply supported on two opposite edges and sybjected
to a single concentrated load on mid span at 1/6th point from free edge.
The slab dimensions are 760 mm x 1080 mm. Due to symmetry about
the mid span line just one half of the slab is taken for analysis and
discretised with 12 elements as shown in Fig. 9. The load-deflection
behaviour for this slab is shown in Fig. 10. The material properties for
both the slabs are :

Ec = 14700 N/mm?, foy =21 N/mm?, f = 2.1 N/mm?

Es = 200000 N/mm?, fy = 250 N/mm?, oo = 230 N/mm?2, n = 2.67

t=38mm,d=32mm,v=0.2
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Fig 8. Load vs. Displacement Curve for Central Node of McNeice’s Slab

11




1080 mm

-

4l P 53 E
[ S —
E 34 40 §
LR O : ®
“f ln 3
Irototo10totor
il B U 3 4 5 8 U 8 Jo 10 1 12l

| 180 mm | 180 mm | 180 mm | 180 mm | 180 mm | 180 mm |
I ! I I i f !

(a)

< n BBJ‘T

”

o __ O fo}
/ l 3mm dia at 38mm crs.

3mm dia at 76mm crs.

(b)
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El-Hafez’s Skew Slab ( Model No. 2)

One of the skew slabs designated as Model No. 2 with 60°¢ skew
angle supported on two opposite edges and tested by El-Hafez.(1986)
are selected for analysis. Fig. 11 shows the dimensions, element grid
system adopted and loading arrangement for the slab. 6, 8, 10 and 12
mm diameter high yield deformed bars were used in the model for
different layers and orientations. For bottom longitudinal direction
parallel to the free edge, chiefly 12-mm dia. bars were used except for
elements 1, 2, 6, 7, 24, 25, 29 and 30. These later elements were
reinforced mostly with 8-mm dia. bars. For bottom transverse direction
parallel to the support edge, mainly 10-mm dia. bars were used. The
equivalent steel layer thickness for both directions were considered for
computer implementation. Fig. 12 shows the curves to represent the
load-deflection behaviour for the slab. The material properties for
concrete and steel are as follows:
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Ec = 29250 N/mm?, fc=36 N/mm?, ft= 3.4 N/mm?2, v=0.2
Es = 211600 N/mm?, fy= 500 N/mm 2, g0 = 500 N/mm?, n = 2.67
t=100 mm, d =85 mm
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Fig 10. Load vs. Displacement Curve for Johnarry’s Slab S590

The experimental results for the examples described above are
compared with the numerical results obtained in the present study in
table 1.

Table 1. Comparison of Experimental Loads with the Present
Numerical Investigation

Slab Cracking Load Ultimate Load

Designation Experimental Present Experimental Present
Analysis Analysis

McNiece’s 1000 3490 3800

Slab {(lbs)

Johnarry’s 1.6 9.18 9.60

Slab (kN)

El-Hafez’s 42.0 327 176.5 181.4

Slab (kN)
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CONCLUSIONS

Comparison of the numerical predictions with the experimental
results demonstrates that the layering technique may suitably be
employed for analysing reinforced concrete slabs including skew ones.
The good agreement obtained in these examples between the numerical
and the experimental results indicates that the present proposed
computational model may be efficiently used with good accuracy. The
material model is perfectly general and so may be used for any
arbitrarily shaped reinforced concrete plates. It is useful in predicting
the cracking and ultimate load carrying capacity of reinforced concrete
slabs. Comparing the numerical load-deflection curves with the
experimental, it may be concluded that the model is able to predict the
entire sequence fairly well under monotonically increasing transverse
load for reinforced concrete skew slabs. The material models adopted for
layered concrete and steel reinforcement are simple and may be adopted
for numerical analysis of reinforced concrete skew slabs.
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