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DEFLECTION OF SEMI-RIGIDLY CONNECTED BEAMS

B. Ahmed !

ABSTRACT: The paper reports theoretical analysis on the serviceability
deflection of the semi-rigidly connected beams (concrete, steel and
composite} under centre point loading, third point loading and uniformly
distributed loading. The semi-rigid beam to column connection has been
simulated by spring of variable stiffness. Using moment area theorem and
assuming elastic behaviour; equations have been derived for end moment,
maximum deflection and its location for different end conditions. The derived
equations have been incorporated into EXCEL workbook through which
design charts have been prepared for computation of end moments, location
and magnitude of maximum deflection. The required minimum depth to span
ratio for beams has also been explored.

KEYWORDS: Semi-rigid, connection stiffness, allowable deflection,
moment area method.

INTRODUCTION

A beam should be designed in a way so that it is safe against
collapse and serviceable in use. Serviceability requires that deflection be
adequately small, cracks, if any, should be kept within the tolerable
limits. Traditional concept of analysing frame assumes a beam-to-
column connection either fully rigid or pin. Numerous tests (Davison et
al 1990 and Li et al, 1996) and numerical studies (Ahmed, B. and
Nethercot, D. A., 1995, 1996, 1997, 1998) have proven that the actual
behaviour is neither pin nor rigid but rather semi-rigid. Practically
almost all the beam—to-column connection exhibits this behaviour i.e.,
between rigid and pin connection. Deflection is greatly influenced by
support condition e.g. simply supported uniformly loaded beam will
deflect 5 times than an identical beam with fixed supports. Thus
calculating deflection assuming a pin connection at the end will result
in a higher estimation of deflection whereas assumption of rigid
connection underestimates the deflection. It thus becomes essential to
acknowledge the exact or real support condition i.e., the stiffness of the
beam-to-column connection for deflection calculation. Thus the problem
can be reduced to the estimation of the support stiffness for estimating
the deflection. Methods {Ahmed, B. and Nethercot, D. A., 1997; EC3,
1992 and Jones et al, 1983) are presently available to predict the
connection stiffness and thus it provides an opportunity for
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investigating the beam deflection from a new angle. Presently the
maximum deflection of beams are limited by various code requirements,
the limits usually expressed in terms of deflection-span ratio. The paper
provides an opportunity to explore the required span to depth ratio
depending on the load and support condition.

GENERAL EXPRESSION FOR END MOMENT

Since deflection calculation is required at serviceability condition,
elastic analysis is adequate for deflection computation. Figure 1
{Ahmed, B. 2002) shows the applied load together with the elastic
loading diagram for a simply supported beam with point load at the mid
span having support stiffness Ka and Kg .at the ends A and B
respectively. The span of the beam is L. Where as Fig 2 shows the
deflected shape, slope and tangents required for the application of the
moment area theorem. From the definition of stiffness,
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1(e) Blastic load for centre point loading

Fig 1. Semi-rigidly connected beam with centre point loading

135



L

El L
Uk, 73 L PL
PL A
M,=|— —oM,={—\f, @
’ ( 8 j[E] +LJ_ 2 ! ( 8 j :
Ky 3) fEI, L
K, 3

Equation (3) and (4) give general expression for end moments of
beams having different support stiffness.

In a similar way for two pint loading using similar technique:
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For uniformly distributed loading:
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Thus it can be seen from equations 3 to 8 that the end moments for
the semi-rigidly connected beams are equal to the fixed end moment of
rigidly connected corresponding beam multiplied by the same function
in all load cases. Thus the general equations for end moments can be

written as:

M, =Mu'.fl(KA’KH) and M, :Mn‘fZ(KA’KH)

M, is the respective end moment for fixed end condition. At the same
time it is of interest to note that the mid span moment can be obtained

by:
M
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Here Ks = n. Ka and EI/L = m Ka.

Figs 3 and 4 show the variation of f1 and f2 with m and n. It is thus
possible to obtain fr and f2 simply by calculating m and n. It should be
noted that the result shown in these two figures represents the following
boundary problems: both end variable stiffness from pin to rigid and
propped cantilever with right end pinned. The limiting condition that is
not covered by these figs is propped cantilever with left end pin
connection due to the way of presenting the equation (i.e., the definition
of m is EI/L = m Ka). To cover this boundary there are two ways: to
define m by Ks and produce another set of Figs the other way that is
preferable is to use the mirror image of the structure to obtain the
solution and than mirror the structure with the obtained solution.
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Here Ks = n. Ka and EI/L = m Ka.

Figs 3 and 4 show the variation of fi and f2 with m and n. It is thus
possible to obtain fi and f2 simply by calculating m and n. It should be
noted that the result shown in these two figures represents the following
boundary problems: both end variable stiffness from pin to rigid and
propped cantilever with right end pinned. The limiting condition that is
not covered by these figs is propped cantilever with left end pin
connection due to the way of presenting the equation (i.e., the definition
of m is EI/L = m Ka). To cover this boundary there are two ways: to
define m by Kg and produce another set of Figs the other way that is
preferable is to use the mirror image of the structure to obtain the
solution and than mirror the structure with the obtained solution.
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Fig 2. Deflected shape showing tangents and location of maxdmum

deflection
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Fig 4. Variation of f with n and m
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GENERAL EXPRESSION FOR LOCATION AND MAGNITUDE OF
MAXIMUM DEFLECTION

Centre point load:

Assuming maximum deflection occurs at point C at distance x from
the right support (see Figures 1 and 2) and using moment area
theorem:

Aly =6, - 6.

Since maximum deflection occurs at point C, .= 0
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Substituting values of fi and f2 in equation (12) the location of
maximum deflection can be obtained.

(12)

From Figures 1 and 2(a),
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From equations 14 and 15 in conjunction with equation 12, it can be
seen that (dnaEl/P) and (dmax E}/(PL3) is independent of P and is a
function of Ka, Ks and EI/L.

Equation (13) represents the general equation for determining
maximum deflection of a beam subjected to a concentrated load applied
at the mid-span.

Figure 5 shows the variation of location of maximum deflection with
ratio of end stiffness Kiu/Ka (n) and beam EI/L to connection stiffness Ko
ratio (m) for centre point loading. For any beam-to-column connection it
is possible to estimate the end stiffness, thus from the ratio of end
stiffness’ and beam EI/L to connection stiffness ratio using this figure
location of maximum deflection can easily be obtained. Fig 6 shows the
variation of (Smax El}/(PL3) with ratio of end stiffness K»/Ka (n) and beam
EI/L to connection stiffness Ko ratio (m) for centre point loading.
Knowing ratio of end stiffness’ and beam EI/L to connection stiffness it
is possible to obtain (Smax El/(PL?) from this figure. Once (dmax El}/{PL?)
is known it can be utilised in several ways like:

¢ Calculating maximum deflection when the connection stiffnesses,
beam section, span and loading is known.

¢ Calculating the beam section through few trials, when beam span,
load and allowable deflection is known.

e Calculating the possible combination of required end stiffness for
known beam section, span, load and allowable deflection.

Third point load:
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Fig 5. Variation of location of maximum deflection with ratio of end
stiffness and m for centre point load
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Fig 6.  Variation of maximum deflection with ratio of end stiffness and m
for centre point load
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Figs 7 and 8 shows the variation of location of maximum deflection
and the variation of (Smax El)/(PL3) with ratio of end stiffness Ku/Ka (n)
and beam EI/L to connection stiffness Ko ratio (m) for third point
loading. The use of these figures is same as the previous cases.

Uniformly distributed load:
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Figs 9 and 10 shows the variation of location of maximum
deflection and the variation of (dmer El}/(wL%) with ratio of end stiffness
Ko/Ka (n) and beam EI/L to connection stiffness K. ratio (m) for
uniformly distributed load: The use of these figures is same as the first
cases.

It can be seen from equations 13, 17 and 21 that for all the load
cases maximum deflection can be generally expressed as:

Orax =0, +0,.,

max

Where 3. is the reduction in deflection due to semi-rigid action of the
beam to column connection form the deflection of the pin connected
beam and is given by:

|
5., =———pM,x* + M,(Lx* - 257
' 6EIL
8s.s is dependent on the loading type and not directly dependent on the
end conditions and is given by:
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Fig 7. Variation of location of maximum deflection with ratio of end
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Fig 8. Variation of maximum deflection with ratio of end stiffness and m
for third point load
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Fig 9. Variation of location of maximum deflection with ratio of end
stiffness and m for uniformly distributed load
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Fig 10. Variation of maximum deflection with ratio of end stiffness and m
for uniformly distributed load
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It should be noted that knowing the end stiffness at first end
moments is to be obtained, using the end moment’s location of the
maximum deflection is to be computed. Using the end moments and the
location of maximum deflection, the magnitude of the maximum
deflection can be obtained.

GENERAL EXPRESSION FOR REQUIRED LENGTH TO DEPTH RATIO
Centre point load:

Equation 15 is helpful to compute the required L/d ratio for any
beam by substituting a proper equation of I for the section under use.
For example using a rectangular section having dimensions bxd,

3

I = —— and thus for rectangular cross sections:
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Figure 11 shows the variation f3 with ratio of end stiffness (n) anc
beam EI/L to connection stiffness ratio (m) for centre point loading.
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Using the allowable deflection, selected width of the beam (that is
usually governed by architectural demand) and 1éad, L/d can easily be
computed from above equation.

Third point load

Like the previous case equation 19 is usable to obtain the required
L/d ratio. For rectangular cross sections:
1
:
1

_L_ - l (5alluuw Ebjx
d | 1(x) x x : 12p

S - 242 zZ_ -

54[L) [9 4f‘L+ fz(zL 3” 162
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L 5{://m| x Eb :)
L 25
p ./4( 13p J (25)

Figure 12 shows the variation fs with ratio of end stiffness (n) and
beam EI/L to connection stiffness ratio (m) for third point loading. .
Using the allowable deflection, selected width of the beam (that is
usually governed by architectural demand) and load, L/d can easily be
computed from above equation.

Uniformly distributed load

Equation 21 can be used to calculate the required L/d ratio. For
rectangular cross sections:

3
!

- I Ebo

é— 72@['51,( )“2ﬁ%“f2(3'2§'ﬂ ( w]

1
Eb501l0n -
_ . 26
fs( 2wl ) (26)

Figure 13 shows the variation fs with ratio of end stiffness (n) and
beam EI/L to connection stiffness ratio (m) for uniformly distributed
load. Using allowable deflection, span, selected width of the beam (that
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Fig 13. Variation of f; with ratio of end stiffness and m for uniformly distributed load
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is usually governed by architectural demand) and load, L/d can easily
be computed from above equation.

Equation 24 to 26 to be used in conjunction with allowable
deflection limits. Thus Figs 11 to 13 provides necessary information to
compute the required depth for rectangular beams, considering
allowable deflection and the semi-rigid action of the beam-to-column
connection. For non-rectangular section, equations 15, 19 and 23 to be
used in combination with allowable deflection limits and Figs 3 and 4 to
estimate the required span to depth ratio.

DESIGN CHARTS

Figures 3 and 4 provide the coefficients {with respect to connection
stiffness ratio Kv/Ka (n) and ratio of beam EI/L to connection stiffness
K. [m]) required for computing the end moments. Figures 5, 7 and 9
provide the location of maximum deflection with respect to connection
stiffness ratio Ki/Ka (n) and ratio of beam EI/L to connection stiffness
Ka (m). Figures 6, 8 and 10 shows the generalised deflection calculation
chart in terms of (Smax E}/(PL3) or (Smax El/(wL4) with respect to
connection stiffness ratio Ku/Ka (n) and ratio of beam EI/L to connection
stiffness Ko (m). For known span, load, allowable deflection and
preferred ratio of Kiu/K. it is possible to obtain the required beam
section.

CONCLUSION.

Numerous codes attempt to check the deflection of beams (concrete,
steel and composite) by imposing various depth-to-span ratios, but in
all the cases the contribution of beam-to-column connection stiffness is
neglected. Also from the codes the actual deflection is not known. This
paper provides a systematic approach towards the computation of
" deflection and method of selection of beam section (moment of inertia)
and beam-to-column connection stiffness to ensure that the deflection
can be kept within the allowable limit.
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