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Abstract 
 
Calibration of water distribution network model is of paramount importance for the optimal 
management of water delivery systems. This includes the determination of network parameters 
such as pipe roughness coefficients and nodal demands. The parameters are not often exactly 
known and very much sensitive to the age of the pipe. The calibration is usually accomplished by 
mimicking the model results to the field conditions. However, it becomes tedious if this is 
performed manually. In this paper, a population based meta-heuristic evolutionary algorithm, 
Shuffled Complex Evolution (SCE), is applied to determine the network parameters. Two 
example problems have been analyzed to demonstrate the robustness of the model. The model 
results show that SCE is capable in reaching the optimal solution in an effective manner. 
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1. Introduction 
 
Water distribution network model is applied to the design of new network and 
rehabilitation or expansion of the existing network. The applicability of the model is 
dependent upon how closely the model approximates the actual field results. The ability 
of approximation in turn relies on the accuracy of the input network parameters. It is, 
however, difficult to estimate the necessary input parameters, especially the pipe 
roughness coefficients and nodal demands, due to economic constraint. These parameters 
are estimated via model calibration. Model calibration can be categorized into two steps 
consisting of: (1) comparison of pipe flows, nodal pressures, and tank water levels, 
predicted by the model with those observed in the field for known operating conditions; 
and (2) adjustment of network input data to decrease the differences between the 
predicted and observed values (Walski, 1983; Bhave, 1988). This process can be 
performed manually as well as automatically.  
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Manual approach uses trial and error method. Values of the parameters are initially 
assumed based on field measurements for conducting simulation and comparing the 
predicted and field results. If the predicted results do not agree the actual results, the 
user then adjusts the parameter values to obtain a better fit. The process is repeated until 
a satisfactory match is obtained. However, this manual approach is tedious and time 
consuming, particularly when the number of calibration parameters is very large.  
 
Automatic calibration methods remove the shortcomings of manual calibration and ease 
the evaluation (decision-making) process to a great extent. This method begins with a 
population of solutions from the feasible space and successively adjusts the pipe 
roughness coefficients and nodal demands in an iterative manner. Automatic calibration 
method is a powerful tool which saves enormous time and improves model performance 
simultaneously. During the last few decades, many traditional and meta-heuristic 
evolutionary optimization algorithms have been adapted for determining the optimal 
network parameters. The traditional methods like linear programming, non-linear 
programming and dynamic programming are not capable of obtaining the global solution 
every time and fall trapped in local optima. Moreover, they need high computational 
effort even to get a feasible solution (Dandy et al., 1996). With the advances in soft 
computing technology, researchers focus on probabilistic approach such as genetic 
algorithm (Lingireddy and Ormsbee, 1998) for solving the problems, which have non-
convex and multimodal objective function. 
 
In this paper, an attempt is made to apply an optimization method, namely, Shuffled 
Complex Evolution (Duan et al., 1992) in conjunction with EPANET (Rossman, 1994) 
hydraulic network simulation tool that can handle both steady state and extended period 
simulation for the determination of optimal network parameters. Two examples have 
been solved to demonstrate the efficiency of the proposed algorithm in terms of 
prediction accuracy and computational overhead.   
 
2. Overview of Shuffled Complex Evolution (SCE) 
 
SCE is a global optimization tool developed at the University of Arizona (Duan et al., 
1992).This technique is based on four concepts: (1) combination of probabilistic and 
deterministic approaches – using probability to determine survivability; (2) shuffling of 
complexes and information sharing; (3) systematic evolution – to improve the solution 
globally; and (4) competitive complex evolution – to guarantee the competitiveness of 
the fittest.  For Detailed discussion the readers are referred to (Duan et al., 1992; Duan et 
al., 1993 and Duan et al., 1994). 
 
The method starts searching with a population of points sampled randomly from the 
feasible space. The populations of points are partitioned into several complexes after 
sorting in order of increasing function value. Each complex is evolved in different 
direction based on the Nelder and Mead Simplex Method (NMSM) (Nelder and Mead, 
1965). The NMSM performs reflection and inside contraction step to get a better fit 
point. The NMSM can be briefly described as follows: (a) based on a triangular 
probability distribution, some points are selected from the complex to construct a sub-
complex; (b) the centroid of the sub-complex is computed excluding the worst point; (c) 
a new point is generated by reflecting the worst point through the centroid of the sub-
complex within the feasible space. If this point is better than the worst point, substitute 
the worst point. Otherwise, a contraction point is computed which is at the halfway 
between the centroid and the worst point; (d) if the contraction point is better than the 
worst point, replace the worst point. Otherwise, a random point is generated within the 
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feasible domain and the worst point is replaced by this point; and (e) the steps (b) to (d) 
are repeated α times, where α ≥ 1 and steps (a) to (d) are repeated β times, where β ≥1. 
Figure 1 depicts the NMSM procedure to generate an offspring. The points in the 
complexes are combined into a sample population. At the periodic stages in the 
evolution, the entire population is shuffled and points are reassigned to complexes to 
ensure information sharing. As the search engine advances, the entire population tends to 
converge toward the global optima.  
 
3. Previous research  
 
Several studies (Ormsbee, 1989; Lingireddy and Ormsbee, 1998; Liggett and Chen, 
1994; Vitkovsky et al., 2000) have been carried out to make the calibration scheme 
automated for the determination of the network parameters. Ormsbee and Lingireddy 
(1997) illustrated seven steps involved in model calibration such as: (i) identification of 
the intended use of the model; (ii) determination of initial parameters; (iii) collection of 
calibration data; (iv) evaluation of results; (v) macro-level calibration; (vi) sensitivity 
analysis; and (vii) micro-level calibration. The micro-level calibration is subdivided into 
steady state and extended period calibration. Steady state calibration involves the 
adjustment of parameters to match pressure and flow rate for static loading condition. 
However, the extended period calibration involves the adjustment of parameters to match 
pressure, flow and tank water level for dynamic loading conditions. Ormsbee (1989) and 
Lingireddy and Ormsbee (2002) proposed to use the nodal pressure, pipe flow and tank 
water level for the calibration of water network model. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Nelder and Mead local search technique to the evolution of a sub-complex 
 
 
Liggett and Chen (1994) introduced inverse transient method (ITM) for the 
determination of friction factors. This method is further improved by Simpson and 
Vitkovsky (1997). The ITM offers much potential in comparison to steady state 
calibration techniques. Vitkovsky el al. (2000), again, enhanced the method using 
genetic algorithms under the transient condition in water distribution systems. 
Lingireddy and Ormsbee (2002) successfully applied GA in conjunction with KYPIPE 
(Wood, 1995) to adjust the pipe roughness and demand factors. Instead of using 
hydraulic network solver, Artificial Neural Network (ANN) was introduced by 
Lingireddy and Ormsbee (1998) in the calibration scheme in order to reduce the running 
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time of the model. However, they needed initial training data set to train the ANN before 
using as a simulation tool. Finally, the trained neural network with GA obtained 
reasonable agreement between the observed and modeled results.  
 
4. Proposed model 
 
Model calibration deals with the adjustment of the hydraulic network parameters until 
the results match the actual measured field data. The basic idea behind the calibration of 
network model is to use an optimization algorithm to generate the decision variables and 
a simulation model to analyze the network. In this study, SCE is linked with EPANET 
network solver for the estimation of pipe roughness factors. It should be mentioned that 
Liong and Atiquzzaman (2004) also used similar model in the optimal design of pipe 
sizes of new water distribution systems. SCE generates pipe roughness coefficients 
randomly within a solution space and update the input file of EPANET. These roughness 
values may be the values used in Colebrook-White formulation, or Hazen-Williams C-
factors. Individual pipe may have the roughness value or groups of pipes can be pre-
selected to have a common roughness value based on the age, material and location. 
EPANET (hydraulic simulation program) then evaluates the hydraulics (nodal pressure) 
of the solution for both steady state as well as extended period simulation. The results 
from simulation model are passed back to the optimization routine, where the algorithm 
computes the objective function, evaluates the constraints and updates the decision 
variables accordingly.  The new decision variables are then transferred to the simulation 
tool again and the process is repeated until an acceptable solution is obtained. The 
overall process is shown in Fig. 2.  
 
The mathematical formulation includes the minimization of root-mean-square error 
(RMSE) between the observed and predicted pressure heads.  
The function is: 
 

RMSE = 2/12
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Here, APit  and SPit = actual and simulated nodal pressures at node i and at time t.  
 
Beside the objective function, several implicit and explicit bound constraints are 
involved in the formulation. For each trial solution, EPANET handles the implicit bound 
constraints (conservation of mass and energy) and simultaneously evaluates the 
hydraulic performance. Explicit bound constraint, however, includes the boundary of the 
pipe roughness. The optimization tool controls this constraint and searches the optimum 
value of pipe roughness for all pipes.   
 
The mathematical formulation can thus be stated as follows: 
 
 Minimize   RMSE             (2) 
 
Subjected to: 
  
G(H,D) = 0,   a conservation of mass and energy equation    (3a) 
 Cmin< C(k) < Cmax ,  constraints related to design parameters    (3b) 
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where, C(k) = decision variables (pipe roughness); Cmin = lower limit of roughness 
coefficients; Cmax = upper limit of pipe roughness. 
 
 
 
 
 
 
  
 
 
                                                            

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  Flow chart of the calibration problem 
 
 
5. Case studies 
 
5.1 Case study one: EPANET network 
  
The first test example (Figure 3) has been taken from EPANET manual (Rossman, 
1994). This network is chosen to check whether the model is able to get the optimal 
calibration parameters. The network comprises of 12 pipes, 9 junction nodes, one 
reservoir, one pump and an elevated water tank. The objective is to determine a set of 
roughness coefficients for all pipes in the network so that the resulting pressure would 
closely mimic the field pressure. The actual roughness coefficient (Hazen-Williams C 
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factor) for all pipes is 100. A hydraulic analysis is performed using this roughness 
parameter for extended period simulation to obtain a set of values of nodal pressure at a 
particular node 9, which are used later on to reproduce the roughness coefficients of the 
pipes.   
 
The analysis is preformed using the boundary of lower limit 50 and upper limit 150 for 
the decision variables and the following SCE parameters are used: the number of 
complexes = 12, number points in each complex = 25, total number of population = 300 
and the maximum number of function evaluation allowed = 15,000. The initial value of 
roughness is assumed 90 for all pipes. Two stopping criteria are checked at each run 
which were: (1) if the number of evaluation of the objective function reaches the 
maximum; or (2) if the objective function value is less than a specified limit (usually 
0.001), the model will be terminated. Ten runs are performed using different initial seed 
value. SCE finds the optimum solution with the expense of shorter period of time. The 
algorithm requires 7,376 function evaluations and a CPU time of only 2 minutes [PC 
with Pentium 4 (Processor 1.79 GHz, RAM 512 MB)].The final roughness coefficients 
are shown in Table 1. Figure 4 depicts the reducing RMSE value with the increasing 
function evaluation number. The simulated and actual pressure head at node 9 over 24 
hours are shown in Fig. 5. It could be seen that the model predicts the actual field results 
with sufficient accuracy.  
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Fig. 3.  EPANET Network (Rossman, 1994) 

 
 

Table 1 
Measured roughness coefficients of the pipes 

 

Pipe No Measured Roughness Coefficients 
1 99.739 
2 100.577 
3 100.659 
4 101.409 
5 101.875 
6 101.472 
7 101.435 
8 99.116 
9 97.534 

10 100.617 
11 104.196 
12 98.784 
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Fig. 4.  Evolution of RMSE with Function Evaluation 

 
 

5.2 Caste study two: Ormsbee and Wood (1986) 
 
The second example (Fig. 6) was presented by Ormsbee and Wood (1986). Table 2 
illustrates the network configuration. It consists of 21 pipes and 13 junction nodes, three 
elevated storage tanks and a pump. The actual pressure heads for nodes 6, 8, 10, and 13 
are given in Table 3. Greco and Giudice (1999) solved this network to adjust the 
roughness coefficients. The pressure head obtained at test nodes by Greco and Giudice 
(1999) and Ormsbee and Wood (1986) are also shown in Table 3.  
 
The program is run with the parameters of the number of complexes = 4, number points 
in each complex = 20, number points in each sub-complex = 10, total number of 
population = 80 and the maximum number of function evaluation allowed = 4,000. The 
model improves the pressure heads at nodes 6 and 8 (Table 3) which are very much close 
to the original value. The good match between the actual and simulated pressure heads 
are obtained only after 1,315 evaluations (average of five runs) of the objective function 
and which takes 22 sec of the computational time in the same PC.  
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Fig. 5. Variation of actual and simulated pressure at node 9 over time 
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Fig. 6. Ormsbee and Wood (1986) Pipe Network 

 
 

Table 2 
Ormsbee and Wood (1986) pipe network 

 

Pipe 
Number 

Starting 
Node 

Ending 
Node 

Length (m) 
 

Diameter 
(mm) 

Node 
Number 

 

Demand 
(L/s) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

0 
1 
2 
3 
1 
4 
4 
9 

10 
2 
2 
6 
0 
7 
6 
8 
8 

10 
11 
0 

12 

1 
2 
3 
0 
4 
5 
9 

10 
5 
5 
6 
7 
7 
8 

11 
11 
3 

11 
12 
12 
13 

300 
250 
450 
300 
150 
250 
170 
250 
170 
150 
160 
140 
80 

140 
300 
300 
200 
200 
300 
200 
175 

300 
250 
250 
200 
250 
200 
250 
250 
200 
200 
200 
200 
200 
200 
200 
250 
250 
250 
150 
150 
150 

2 
3 
6 
8 
9 

11 
13 
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Table 3 
Actual and calibrated nodal pressures 

 

Calibrated Pressure (m) Node Actual 
Pressure (m) Ormsbee and Wood 

(1986) 
Greco and Giudice 

(1999) 
SCE 

6 
8 

10 
13 

142.00 
143.00 
142.00 
141.50 

141.90 
142.69 
142.00 
141.50 

141.97 
142.72 
142.00 
141.50 

142.08 
143.00 
141.92 
141.50 
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6. Conclusions 
 
Water distribution network model is calibrated to adjust the network parameters (pipe 
roughness coefficients and nodal demands) so that the hydraulic performance closely mimics 
the field condition. However, optimal calibration is not an easy task due to nonlinear objective 
function and numerous local minima within the solution space. Many conventional techniques 
do not guarantee optimal solutions. In this study, SCE (Duan, et al., 1994) has been applied in 
conjunction with widely used hydraulic network solver, EPANET to determine optimal 
network parameters. Two problems have been solved to demonstrate the capability of SCE. 
The results show that SCE performs efficiently in reaching the global optimum solution in 
both the case studies.  
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